
Department of Electrical
and

Computer Systems Engineering

Technical Report
MECSE-16-2004

Using Synchronised FireWire Cameras For Multiple Viewpoint
Digital Video Capture

J. U and D. Suter

Using Synchronised FireWire Cameras For Multiple Viewpoint

Digital Video Capture

James U
Electrical and Computer Systems Engineering

Monash University, Clayton
Email: james.u@eng.monash.edu.au

Assoc. Professor David Suter
Electrical and Computer Systems Engineering

Monash University, Clayton
Email: d.suter@eng.monash.edu.au

November 10, 2004

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Contents

1 Introduction 3

2 Why FireWire? 4
2.1 Key Features . 4

2.1.1 Speed . 4
2.1.2 Plug and Play . 5
2.1.3 Scalability . 5
2.1.4 Asynchronous and Isochronous Transfer 5

2.2 Digital Camera Specification . 7
2.3 Isochronous Transfers and Video Streaming 8
2.4 FireWire Alternative — Camera Link . 8

3 Cameras Tested 12
3.1 Point Grey Scorpion . 12

3.1.1 SCOR-13SM . 12
3.1.2 SCOR-13FF . 14

3.2 Point Grey Flea . 14
3.3 Allied Vision Technologies Marlin F-131C . 15

4 Streaming Issues 17
4.1 Storage Capacity . 17
4.2 Bandwidth and Throughput Limitations . 17
4.3 Writing to Disk . 17

5 Synchronisation Using an External Trigger 20
5.1 Using an External Trigger . 22

5.1.1 External trigger results . 22
5.1.2 FRAME TIMESTAMP . 23

5.2 External Trigger Limitations . 23

6 Synchronisation of Cameras on the Same FireWire Bus 27
6.1 How Automatic Synchronisation Works . 27
6.2 Automatic Synchronisation Results . 30

7 Synchronisation of Cameras on Different FireWire Buses 32
7.1 Point Grey Sync Unit . 32

7.1.1 How the Sync Unit Works . 33

1

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

7.1.2 Sync Unit Issues . 35
7.2 Software Synchronisation . 36
7.3 Using an Ethernet trigger . 36

7.3.1 Latency Under Windows XP . 37
7.3.2 Ethernet Synchronisation Results . 38
7.3.3 Further Synchronisations Tests . 39

7.4 Remarks on the Ethernet Synchronisation Results 41
7.5 Software Synchronisation Alternative — NTP 44

8 Conclusion 45

2

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Chapter 1

Introduction

We are interested in developing a system to perform multiple viewpoint digital video capture.
The scale of the system will be such that we are able to capture video of a human subject
performing dynamic actions such as martial arts and dance movements. Applications of this
system include three dimensional video reconstruction of the subject’s actions for movement
modelling, motion analysis, or simply entertainment purposes.

We propose a scalable system involving multiple synchronised cameras (at least six) cap-
turing uncompressed video that is written to disk by multiple controlling host PCs. For this
system we have chosen to use FireWire digital video cameras and standard PCs. This report
details our investigation of the hardware and software needed to realise the synchronised mul-
tiple viewpoint video capture that we propose. Rai et al. describe the implementation of a
similar system in [7], although they remain vague on the degree of synchronisation that they
were able to achieve.

We begin in Chapter 2 by justifying our choice of FireWire digital video cameras for the
system, including explanations of the relevant features and capabilities of FireWire. Next in
Chapter 3 we provide a survey of the cameras that we tested and plan to use for our system.
Chapter 4 follows with a study of the hardware issues that need to be addressed in order
to ensure that the streamed video is written to disk without dropping any frames. Finally
Chapters 5–7 detail the various inter-camera synchronisation methods that we investigated.
We conclude with a summary of the proposed possible implementations of the synchronised
multiple camera video capture system.

3

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Chapter 2

Why FireWire?

IEEE-1394, or ‘FireWire’ as it is more commonly known, is a high speed serial bus imple-
mentation first developed by Apple Computers in the mid 1980s (the two terms will be used
interchangeably throughout this report). It is a standardised architecture which allows for
the interconnection of a wide range of devices, ranging from PCs to storage devices to digital
video cameras. It was designed with many special features, including support for isochronous
transfers which makes it ideally suited to digital video capture.

In this chapter we will discuss some key advantages of FireWire and justify its choice
for multiple viewpoint digital video capture. For a comprehensive guide to the IEEE-1394
specification the reader is referred to [1]. Also of interest may be [3] which presents a case for
FireWire as today’s technology of choice in machine vision applications.

2.1 Key Features

2.1.1 Speed

FireWire is a scalable high speed serial bus implementation. To clarify, the specific imple-
mentation of the FireWire/IEEE1394 standard we refer to in this report is IEEE1394a. This
is the version currently employed by most consumer level FireWire devices, including digital
video cameras. It is also known as ‘FireWire 400’ since the bus’ bandwidth is 400 Mbit/s
(393.216 Mbit/s to be precise). FireWire 400 is backwards compatible with older implemen-
tations of FireWire running at 200 Mbit/s and 100 Mbit/s although the bandwidth of the
bus is limited to that of the lowest speed implementation when they are mixed.

There exists a newer implementation of FireWire known as IEEE1394b or ‘FireWire 800’
which doubles the bandwidth to 800 Mbit/s.1 It too is ‘bandwidth-limited’ backwards com-
patible. FireWire 800 is not yet widely supported at the consumer level — at present only
storage devices are available and it is not clear as to when, if ever, digital video cameras will
be made to this specification.

The high speed of the FireWire bus readily facilitates the streaming of uncompressed
digital video. At 400 Mbit/s, a single FireWire bus is able to handle uncompressed digital

1Future developments in FireWire technology will see the bandwidth increasing further to 1600 Mbit/s and
beyond to 3200 Mbit/s.

4

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

video capture from 2 cameras running at 1024x768 and 15 fps or from 3 cameras running at
640x480 and 30 fps (Section 2.3).

2.1.2 Plug and Play

The FireWire serial bus is designed for plug and play and all devices designed for it support
automatic configuration. With FireWire, any device that is attached to the bus automatically
participates in the configuration process — no manual intervention from the host system is
necessary. Furthermore, each time a device is added or removed, the bus automatically
reconfigures itself accordingly. These plug and play capabilities greatly enhance FireWire’s
ease of use.

2.1.3 Scalability

FireWire is a highly scalable technology. It allows for the attachment and support of a wide
variety of peripheral devices to a given host system. Typically the IEEE-1394 serial bus is
attached to the PCI bus of the host system via a 1394-to-PCI Open Host Controller Interface
(or OHCI) compliant interface card. This PCI card acts as the ‘root node’ of the serial bus to
which ‘branch’ or ‘leaf’ nodes (i.e. FireWire devices) are attached. These nodes may include
storage and imaging devices, hubs and repeaters (which may be daisy-chained together to
increase the amount of physically attachable nodes), or even another host system (when
using FireWire as a networking technology).

A single IEEE-1394 serial bus implementation supports up to 64 node addresses. Of these,
63 may be physical nodes with the final one reserved as a broadcast address which all nodes
recognise and may use to broadcast configuration messages and other information. Although
theoretically this suggests the ability to attach 63 digital video cameras to a single host system
for video streaming, in practice, due to FireWire bandwidth and channel restrictions (Section
2.1.4) and the underlying PCI bus and processing capabilities of the host system (Chapter
4), only 2–4 such cameras may realistically be attached to any one FireWire bus. However,
considering the multiple camera system we propose, and the fact that a PC may support up
to 3 FireWire buses (Section 4.2), this is degree of scalability provided by FireWire is clearly
preferable to having one dedicated PC for each camera.

2.1.4 Asynchronous and Isochronous Transfer

The FireWire serial bus supports two distinct data transfer protocols — ‘asynchronous’ and
‘isochronous’. The nature of the node application dictates which of these two protocols is to
be used. The ‘asynchronous’ transfer mode is used for applications which require data deliv-
ery of guaranteed integrity over a non-specified period of time. An example of this is data
storage where the integrity of the data must be ensured but the time in which the transfer is
completed is not of critical importance. To facilitate this, the asynchronous transfer protocol
employs data and acknowledgement packets, error checking and possible retransmission pack-
ets between the ‘requester’ (which is sending the data) and the ‘responder’ (which is receiving
the data).

It is, however, the ‘isochronous’ data transfer capability of FireWire which is pertinent
to video capture. Isochronous applications may be identified as those in which the rate of

5

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Figure 2.1: Timing of multiple isochronous and asynchronous data transfers. Source: [1], p.
155 (adapted)

data transfer rather than its integrity is of critical importance. As an example, consider
a camera which captures 1024x768 images at a constant rate of 15 fps and streams the
data across the IEEE-1394 bus to memory buffers on the host system. In this case we are
not concerned if a few bytes of a particular image are corrupted. We will certainly not
compromise the frame rate by requesting a retransmission of the corrupted bytes. Nor do
we require explicit acknowledgement that the data has been received. Here the matter of
critical importance is the guaranteed rate of transfer of the images across the bus. FireWire
facilitates this requirement with the isochronous data transfer protocol which sends the data
from the requester to the responder fragmented into packets at regular 125 µs intervals. The
size of the payload data of these packets is determined such that the complete piece of data
(say, one frame) is guaranteed to be transferred across the IEEE-1394 bus within the desired
time interval (say, the requested frame rate).

FireWire is designed to handle multiple isochronous and/or asynchronous transaction
requests by sharing its 400 Mbit/s bandwidth between the various requests. This allows, for
example, multiple cameras attached to a single FireWire bus, to stream video concurrently.
It is achieved by dividing the 125 µs periodic intervals into sub-intervals in which the entire
bandwidth of the bus is owned by a particular isochronous/asynchronous transaction.

This bus sharing scheme is illustrated in Figure 2.1. The figure shows how each 125 µs
cycle is divided into periodic ‘channels’ for the requested isochronous transactions, and pack-
ets/acknowledgements for the requested asynchronous transactions. The ‘cycle start data’
present at the beginning of each cycle period initialises the bus to handle these requests
accordingly for the given period.2

As an example isochronous transaction, consider an imaginary image 8000000
bytes in size that must be streamed from a camera at 1 frame per second. To
ensure that this occurs, the FireWire bus allocates a channel in each 125 µs cycle
period with a data payload size of 1000 bytes. Thus, 1000 bytes is guaranteed to be
transferred every 125 µs during the slice of the cycle period owned by the allocated
channel. Of course, 1000 bytes/125 µs = 80000000 bytes/s as required (the

2Note that the FireWire 400 specification stipulates that the maximum data payload size per 125 µs cycle
period is 4096 bytes for isochronous channels and 2048 bytes for asynchronous packets (data is fragmented
into packets limited by these sizes if they are exceeded).

6

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

actual figures for isochronous transactions involving digital video cameras, along
with real examples, are given in Section 2.3).

Isochronous and/or asynchronous transaction requests are handled by a root node (deter-
mined during the configuration process) which is capable of being the ‘bus manager’. This
bus manager provides the necessary timing information and allocates the bus’ resources by
arbitrating over the various requests. A complete explanation of the arbitration process is
given in [1]. We will only note here that the IEEE-1394 specification states that a maximum
of 80% of the bandwidth of the bus may be allocated to isochronous transactions with a
minimum of 20% necessarily allocated to asynchronous transactions. This means that digital
video cameras using isochronous transfer to stream video over a FireWire bus are limited to
a bandwidth of 40 MB/s (320 Mbit/s) rather than the nominal 50 MB/s (400 Mbit/s).

2.2 Digital Camera Specification

Before the advent of FireWire digital video cameras, machine vision was largely the domain
of analog video cameras and analog-to-digital frame-grabbers. Both the cameras and their
respective frame-grabbers were invariably proprietary technologies, each with their own con-
nection cables, command sets and control libraries. Without a standard to interface the
cameras/frame-grabbers to host systems the user was burdened with having to learn how to
operate each particular device as well as being restricted to a particular host operating system
and unable to mix technologies.

Fortunately, along with the development of FireWire, the 1394 Trade Association intro-
duced the ‘1394-based Digital Camera Specification’ (or DCAM spec for short). The DCAM
spec defines a standardised set of functions and capabilities for FireWire digital video cameras
along with a set of register based controls to interface cameras to host systems. The specifi-
cation covers camera aspects such as video format, frame rate and external triggering as well
as filter, shutter, balance, gain and brightness controls. The specification also allows for the
implementation of manufacturer specific advanced camera capabilities. Currently the DCAM
spec is at version 1.31 and is available for download (for a fee) from http://www.1394ta.org.

Writing code to control DCAM spec compliant cameras is made easy with the appro-
priate software libraries. One such open source C/C++ implementation of the DCAM spec
is the 1394-based digital camera control library libdc1394 for Linux based operating sys-
tems (http://sourceforge.net/projects/libdc1394/). With little difficulty, we inter-
faced a mixture of FireWire cameras from different manufacturers with a Linux PC using
libdc1394 and a GUI written for it called coriander (http://sourceforge.net/projects/
coriander/).

Although it is useful to be able to write software to control a heterogeneous mix of FireWire
cameras, ultimately we will be using a homogeneous set of cameras for our project. Moreover,
we will have need to control manufacturer specific advanced camera capabilities. For this
reason it was decided to write all camera software using the proprietary camera control
library supplied by the camera manufacturer itself (which implements both the DCAM spec
and provides access to model-specific advances features).

7

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

2.3 Isochronous Transfers and Video Streaming

An example of how an imaginary isochronous transaction is handled by the FireWire bus was
given in Section 2.1.4. We now turn our attention to real examples of how the isochronous
transactions (used by digital video cameras to stream images at a constant frame rate) are
handled by the FireWire bus.

The 1394-based Digital Camera Specification indicates isochronous bandwidth require-
ments for streaming video at standard resolutions and frame rates which DCAM spec com-
pliant cameras must adhere to. Figure 2.2 shows these requirements for the ‘Format 0’ (‘low’
resolution) video modes. Recall from Section 2.1.4 that the data payload per cycle period for
an isochronous transaction cannot exceed 4096 bytes or 1024 ‘quadlets’ (note that the DCAM
spec prefers ‘quadlets’ to bytes, where 1 quadlet = 4 bytes).

Consider Mode 5 — 640x480 Y8. At 30 fps, the requirement is 320 quadlets/packet or 1280
bytes/packet. Since 640x480 × 8 bits/pixel = 307200 bytes/frame is being transferred
across the bus at 1280 bytes/packet at a rate of 1 packet/125 µs, the total time taken to trans-
fer one whole frame is 307200 bytes/frame ÷ 1280 bytes/packet × 125 µs/packet =
30 ms. Since 30 fps = 1 frame every 33.3 ms, the whole frame is transferred within the
required time period.

Clearly the DCAM spec’s isochronous bandwidth requirements have been calculated to
satisfy the video format/mode and frame rate requested. As another example, consider
Mode 5 at 60 fps. Figure 2.2 indicates that 640 quadlets/packet or 2560 bytes/packet
is required. This gives 307200 bytes/frame ÷ 2560 bytes/packet × 125 µs/packet =
15 ms to transfer on whole frame across the bus. Since 60 fps = 1 frame every 16.7 ms, the
whole frame is again transferred within the required time period.

Notice in the first example the isochronous bandwidth required for 640x480 Y8 at 30 fps
is 320 quadlets out of a maximum of 1024 quadlets per period. That is, 320 ÷ 1024 × 100
= 31.25% of the bus’ bandwidth is used. This means that 3 such isochronous channels may
exist simultaneously on the one FireWire bus, making it possible to stream uncompressed
640x480 Y8 images at 30 fps concurrently from 3 FireWire cameras. Note however at 60 fps,
since 62.5% of the bus’ bandwidth is used, only one such camera may be handled by a single
FireWire bus.

Using the required bandwidth values specified by the DCAM spec, Table 2.1 shows the
percentage of the ≈ 40 MB/s total isochronous bandwidth that is required by various standard
video resolutions and frame rates. The maximum possible number of cameras attached to a
single bus and streaming simultaneously may be inferred from this table.

2.4 FireWire Alternative — Camera Link

The combination of IEEE-1394a OHCI compliant PCI cards, DCAM spec compliant digital
video cameras and standard FireWire cables has supplanted the older technology of analog
video camera/frame-grabber and device specific cables for most machine vision applications.
The FireWire solution provides the many advantages outlined in this chapter and is com-
paratively inexpensive (see [3] for a comparison of FireWire and analog video camera/frame-
grabber technologies).

8

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Figure 2.2: Isochronous bandwidth requirements for Format 0 images. Source: [5], pp. 69–70

Video Resolution and Frame Rate Bandwidth Used
640x480 Y8 @ 30 fps 31.25 %
640x480 Y8 @ 60 fps 62.5 %
1024x768 Y8 @ 15 fps 37.5 %
1024x768 Y8 @ 30 fps 75.0 %
1280x960 Y8 @ 7.5 fps 31.25 %
1280x960 Y8 @ 15 fps 62.5 %

Table 2.1: Isochronous bandwidth required for standard video resolutions/frame rates.

9

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Despite being a particularly suitable bus architecture, the IEEE-1394 serial bus was not
designed specifically for machine vision applications. The usable bus bandwidth limitation of
≈ 40 MB/s (for IEEE-1394a) means that the absolute maximum video resolutions and frame
rates achievable by FireWire cameras on the bus range from 640x480 at 60 fps to 1024x768
at 30 fps to 1280x960 and 1600x1200 at 15 fps. Higher frame rates may be achieved at the
expense of resolution — the DCAM spec includes a user-definable video format which accepts
a selectable ‘area of interest’, allowing for frame rates of up to 250+ fps when a smaller area
of interest has been selected.3

FireWire 400’s present ≈ 40 MB/s bandwidth limitation will be overcome with the newer
implementations of FireWire 800, 1600, and 3200. However, digital cameras have yet to
be designed for these versions of FireWire and it is not clear as to whether or not this
will eventuate in the near future. But for machine vision applications which require video
resolutions and frame rates in excess of those achievable by FireWire, there already exists an
industry standard named Camera Link.

The specifications of the Camera Link interface standard for digital cameras and frame-
grabbers is available on-line from http://www.machinevisiononline.org. In brief, Camera
Link is a standard developed by a group of industrial camera and frame-grabber manufacturers
which defines:

• A standard connector that will be used on both the camera and the frame-grabber and
a standard cable to connect the two

• Formats for transmitting image data from the camera to the grabber

• Standard camera control inputs

• A standard method for transmitting serial communication data between the camera and
the grabber

• A standard chip set that will be used in the camera and the grabber for image data
transfer

Thus the Camera Link camera/frame-grabber solution parallels that of the FireWire one
in terms of features with the exception of a couple of key differences:

• Camera Link is a point-to-point implementation as opposed to a bus one such as
FireWire — rather than allowing multiple cameras to share one bus, it requires one
frame-grabber for each camera used.

• Camera Link uses a chip set that employs low voltage differential signalling (LVDS)
technology which enables 2.38 Gbit/s data transfer rates between camera and frame-
grabber.

3It is important to note though, that the maximum possible integration (or shutter) time of the camera is
subject to constraint by the frame rate. For example, at 100 fps an image is taken every 10 ms, so the camera
is allowed, at most, only 10 ms to integrate the light energy from the scene (i.e. the scene being imaged needs
to be really well lit).

10

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

At 2.38 Gbit/s Camera Link cameras can capture, for example, 1280x1024 images at
500 fps — well beyond the upper limits of FireWire’s capabilities. The trade-off, not surpris-
ingly, is cost of implementation (see http://www.opsci.com for an extensive list of Camera
Link products and prices). At present, base prices for Camera Link cameras are typically
2–3 times more than that of FireWire ones, plus there is the cost of the frame-grabbers and
cables required which are around 4–5 times that of their FireWire equivalents (not to mention
needing a dedicated frame-grabber for each camera). Furthermore, the standard PCI-32/33
(133 MB/s) buses which FireWire connects to cannot handle the 250+ MB/s bandwidth that
Camera Link outputs, making it necessary to use host PCs with PCI-64/66 (533 MB/s) buses
instead, again adding further to the cost of implementation. And then finally, even with the
ability to handle this bandwidth for video capture purposes, the host PCs will still need to be
able to write the data out to disk somehow (Chapter 4). At these transfer rates, only a large
striped RAID array of high-speed hard drives will be able to manage. Overall, it makes for
a prohibitively expensive solution, especially when looking to implement a multiple camera
system.

As a final note, we have decided that video at 1024x768 and 30 or even 15 fps, which
the FireWire implementation is capable of, is quite sufficient for our needs of capturing
human movement. The Camera Link alternative is clearly geared towards much higher
speed/resolution machine vision applications where cost of implementation is not an issue.

11

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Chapter 3

Cameras Tested

We tested a few different FireWire cameras for the multiple view video capture project (all
of which comply with the 1394-based Digital Camera Specification version 1.31) — the Point
Grey Scorpion (models SCOR-13SM and SCOR-13FF) and the Marlin F-131C from Allied
Vision Technologies. To this list we add the Point Grey Flea which, subject to testing when
available to us, we ultimately intend to use for the project. We now detail the key features
and capabilities of these cameras.

3.1 Point Grey Scorpion

The Point Grey Scorpion is available in a range of models which are distinguished primarily
by the imaging sensors used. The range includes cameras using CMOS and CCD imaging
sensors which operate from 0.3 mega-pixels to 2.0 mega-pixels and are available in both mono
and colour versions.

3.1.1 SCOR-13SM

The SCOR-13SM is a 1.3 mega-pixel model of the Scorpion which uses a Symagery 2/3”
CMOS sensor (model VCA1281). We tested a set of 4 such cameras, 2 colour and 2 mono.
The SCOR-13SM supports the DCAM spec standard video formats/modes and frame rates

Figure 3.1: (Left to right) Point Grey Scorpion and Flea, AVT Marlin.

12

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Format Mode Mode Description Frame Rate
1.875 3.75 7.5 15 30 60 120

0 5 640x480 Y8 • • • • •
1 2 800x600 Y8 • • •
1 5 1024x768 Y8 • • • • •
2 2 1280x960 Y8 • • • •

Table 3.1: SCOR-13SM supported video formats/modes and frame rates. Source: [6], p. 19

Figure 3.2: Left: Motion blur exhibited by CMOS rolling shutter. Right: Same scene imaged
by CCD global shutter. Source: Point Grey Knowledge Base Article 115.

listed in Table 3.1. It also implements the DCAM spec Format 7 custom video format/mode1,
enabling up to 1280x1024 video capture at 15 fps. The SCOR-13SM is also capable of 640x480
at 100 fps and 320x240 at 275 fps using Format 7.

As mentioned, the SCOR-13SM uses a CMOS sensor for imaging. Almost all CMOS
image sensors use a ‘rolling shutter’ (an exception is the SCOR-13FF’s sensor — Section
3.1.2) wherein all the photodiodes (i.e. pixels) do not start collecting light at the same time.
Instead, rows of pixels begin their light integration at the same time, but these integration
periods are offset for each row, beginning at the top. Although this does not pose a problem
for still images, image distortion may be created with moving objects since the upper image
parts are scanned earlier than the lower ones as the ‘integration by row’ sweeps down the
image. The resultant motion blur effect is shown in Figure 3.2. Note that this distortion does
not occur with CCD sensors since they use ‘global shutters’ where all pixels start collecting
light at the same time.

We note however that when the integration time is small enough, tests taken of a subject
performing reasonably fast movements did not exhibit any clear evidence of such image dis-
tortion. We suspect that the motion blur seen in Figure 3.2 only becomes an issue with very
high speed moving objects such as the blades of a fan.

SCOR-13SMs, indeed all Scorpion cameras, provide a set of general-purpose I/O pins
accessible via an external interface. Through the I/O pins the camera can be configured to
trigger the start of image integration on an external electrical signal or produce a similar
signal that allows devices external to the camera (say, a flash) to be synchronised to (and

1With Format 7 specific regions of interest may be selected, allowing for higher frame rates by reducing the
amount of data being sent along the IEEE-1394 bus per frame.

13

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

possibly offset from) its start of integration. This external triggering ability is explored as an
option for synchronising multiple cameras in Chapter 5.

A final very useful feature implemented in all Point Grey cameras is their hardware-level
automatic synchronisation. Same model cameras operating on the same FireWire bus and
capturing at the same frame rate will automatically synchronise their image acquisition to
within 125 µs of one another. This automatic intra-bus camera synchronisation is detailed in
Chapter 6.

Unfortunately, the SCOR-13SM cameras do not work with the Point Grey Sync Unit
(Section 7.1), ruling out the latter’s use as a means of synchronising multiple such cameras
across different buses.

3.1.2 SCOR-13FF

Like the SCOR-13SM, the SCOR-13FF is a 1.3 mega-pixel model of the Scorpion. It is a
newer model which is intended to replace the older SCOR-13SM. The sensor now used is
a FloodFill 2/3” CMOS sensor (model IBIS5A). Unlike the Symagery sensor of the SCOR-
13SM, the FloodFill sensor uses a global shutter rather than a rolling shutter, avoiding the
possibility of rolling shutter image distortion as described above.

In terms of features and capabilities the SCOR-13FF is otherwise almost identical to the
SCOR-13SM, again supporting up to 1280x1024 Y8 capture at 15 fps in custom image mode
as well as the latter’s standard formats/modes and frame rates. However the key advantage in
choosing this model over the older SCOR-13SM (other than the global shutter functionality)
is that this newer model Scorpion does work with the Point Grey Sync Unit.

We tested one colour version of the SCOR-13FF. Point Grey advised that there have
been some problems with the FloodFill IBIS5A imaging sensor in terms of ‘burned’ pixels,
resulting in fixed noise patterns in the images. We found this to indeed be the case (Figure
3.3). Given the degree of noise we observed, coupled with problems obtaining colour images
at certain resolutions, it was decided that the benefits offered by this newer Scorpion model do
not justify it’s use. With neither model of Scorpion completely satisfying our requirements,
we investigated the Point Grey ‘Flea’ range of cameras.

3.2 Point Grey Flea

The Point Grey Flea cameras are almost identical, in terms of features and capabilities,
to the Scorpions. Of particular interest, the Fleas also (a) automatically synchronise their
image acquisition to one another when connected on the same bus and, (b) support external
triggering. And, like the SCOR-13FF, they are able to be synchronised across different buses
using the Point Grey Sync Unit.

The key difference with the Fleas is that they use smaller imaging sensors, resulting in
lower maximum resolutions. The Flea uses Sony 1/3” (global shutter) CCD imaging sensors,
models ICX424 and ICX204, whose maximum resolutions and frame rates are 640x480 at
60 fps and 1024x768 at 30 fps respectively (as opposed to the Scorpions we tested, which are
capable of 1280x1024 at 15 fps).

14

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Figure 3.3: Example of burned pixels on dark image exhibited by IBIS5A sensor. Source:
Point Grey Technical Application Note 2004005.

As shown in Table 2.1, bandwidth limitations mean that 640x480 at 30 fps, 1024x768
at 15 fps and 1280x960 at 7.5 fps are the maximum possible standard video resolutions and
frame rates when looking to use multiple cameras on a single FireWire bus. Considering
that 7.5 fps is possibly too low a frame rate for capturing human movement, it was decided
that the Fleas lack of support for 1280x960 resolution was of little importance since they
otherwise presented us with all the advantages of the SCOR-13SM and SCOR-13FF without
the negative drawbacks of either.

Thus, subject to testing when the cameras are made available to us, we intend to use the
Point Grey Flea (1024x768 high-resolution model) in our multiple camera system. Interest-
ingly this model of the Flea costs the same as the higher resolution Scorpions, which suggests
that one is likely paying the equivalent amount for the more expensive/higher quality CCD
sensor at a lower resolution.

3.3 Allied Vision Technologies Marlin F-131C

The Marlin F-131C from Allied Vision Technologies was tested as an alternative to the Point
Grey range of FireWire cameras. Like the SCOR-13FF, this camera uses the FloodFill 2/3”
global shutter CMOS sensor (model IBIS5A). Interestingly, unlike the SCOR-13FF however,
we observed no signs of the fixed pattern noise due to burned pixels that affected the SCOR-
13FF.

The Marlin provides a host of features and capabilities not found in the Point Grey
cameras. Whilst the camera is capable of all the standard video formats/modes and frame

15

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

rates provided by the Scorpions, the Marlin further adds to this list the optional output of
video data in (colour) YUV 4:2:2, and YUV 4:1:1 modes as well as standard (mono) Y8. Also,
in Format 7 mode at the maximum resolution of 1280x1024, the camera is able to capture at
25 fps.

The Marlin includes a range of on-board functions including:

• Real-time shading and colour correction

• Real-time bayer demosaicing and RGB to YUV conversion

• User programmable look up table

These advanced features come at a cost though — the Marlin is approximately twice the
price of the Point Grey cameras. It was decided that we do not require these extra (real-time)
features since we wish to post-process the video capture data in any case. The AVT Marlin
is left as an alternative for applications where immediate colour video output is required.

16

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Chapter 4

Streaming Issues

4.1 Storage Capacity

Writing the video streamed from the cameras to disk presents a few issues that must be
addressed. The most obvious issue which comes to mind is storage capacity. Consider for
example, streaming to disk uncompressed video from 2 cameras capturing 8 bits/pixel images
at a resolution of 1024x768 and a frame rate of 15 fps. This produces about 23.6 MB/s of
data or 1.4 GB/min. Fortunately, such large amounts of data are no longer a major concern
as today’s hard drive capacities readily meet these demands.

4.2 Bandwidth and Throughput Limitations

Of greater concern than storage capacity is the actual ability of the host system to handle
these necessarily high levels of data throughput. Figure 4.1 illustrates the flow of data from
the cameras to disk. The cameras are connected to the host system’s PCI bus via a 1394-
to-PCI controller. As noted earlier, the maximum bandwidth of the ‘effective’ FireWire bus
(consisting of the cameras and the controller card) is ≈ 40 MB/s. The PCI bus to which this
FireWire bus is attached is a 32-bit PCI-32/33 bus with a maximum bandwidth of 133 MB/s.
Considering these bus bandwidths, 3 FireWire buses may (theoretically) be handled by the
one PCI bus, providing for up to 6–9 cameras per host PC depending on the capture resolution
and frame rate.1

4.3 Writing to Disk

The ability to handle video throughput up to the maximum bandwidth of the host system’s
PCI bus (be it 32-bit or 64-bit) is nevertheless of no use to us if we are unable to write the
video to disk in a timely manner — that is to say, without having to drop any frames. Figure

1A (relatively expensive) higher bandwidth alternative to the standard 32-bit PCI-32/33 buses are the
newer 64-bit PCI-64/66 buses which increase the maximum bandwidth to 533 MB/s. These 64-bit PCI buses
interface with the newer FireWire 800 cards. However, if used to connect FireWire cameras, it must noted
that half the bandwidth of these FireWire 800 buses will be wasted as the speed drops from 800 Mbit/s to the
400 Mbit/s operating speed of the cameras (Section 2.1.1). A system with a PCI-64/66 bus might be useful if
the user wished to implement a bank of FireWire 800 cards to attach a large amount of cameras to the host
system, since the 64-bit PCI bus would be able to handle the combined throughput of these FireWire buses.

17

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Figure 4.1: Flow of video data from camera to disk.

Model Interface Rate (MB/s)
Seagate Barracuda 7200 rpm Serial ATA-150 32–58

Western Digital Raptor 10000 rpm Serial ATA-150 46–72
Seagate Cheetah 15000 rpm Ultra-320 SCSI 49–75

Table 4.1: Select hard drives and their average–maximum sustained transfer rates.

4.1 shows how the cameras stream the captured frames via direct memory access (DMA) over
the PCI bus to buffers in main memory. These frame buffers are overwritten as newer images
arrive from the cameras and there is an upper limit of 128 frame buffers per camera. This
means that if we wished to allocate buffers for each frame to be captured and write the series
of images out to disk afterwards, we would be limited to image sequences of a few seconds at
most, even with gigabytes of available main memory.

Returning to Figure 4.1, we see that a CPU interrupt is generated whenever a whole frame
has been transferred from a camera to a frame buffer. Next a high priority driver callback
signals to the user-space camera capture process that the frame in memory is complete and
ready to be written out to disk. If no other operations on the frame are required, the process
can immediately write the raw image data out to disk. The hard drive controller is connected
directly to the southbridge on most modern motherboards, so the full bandwidth of the hard
drive bus can be used for this writeout task.

The common Ultra-ATA bus depicted has a maximum bandwidth of 133 MB/s, matching
that of the PCI-32/33 bus. But it is important to note that this value is the maximum
bandwidth of the hard drive interface provided by the bus — the actual rate at which data
may be written to disk is determined by the sustained transfer rate of the hard drive itself.
Table 4.1 shows typical sustained transfer rates for some common hard drives. The drives

18

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

listed are actually higher-end Serial ATA and SCSI drives, but the average Ultra-ATA drive
performs comparably, generally being capable of a 40 MB/s sustained transfer rate — which
incidentally matches the maximum bandwidth of a single FireWire bus. That is to say, subject
to latencies incurred by the host PC’s operating system and the user-space capture process,
one decent quality hard drive should be capable of writing to disk, in a timely manner, the
video data streaming across a given FireWire bus operating at maximum throughput.

To summarise, it is possible, using a PC with a single decent quality hard drive, to
stream up to the maximum 40 MB/s of video across a single FireWire bus directly to disk
without dropping any frames. Indeed, we have achieved such results, streaming uncompressed
1024x768 images at 15 fps simultaneously from 2 cameras and 640x480 images at 30 fps
simultaneously from 3 cameras for sustained periods without dropping any frames.

As mentioned earlier, it is also possible to have up to 3 FireWire buses attached to the
one standard PCI-32/33 bus streaming concurrently. However, in order to write the video
to disk at such high throughput levels without dropping frames we require a striped RAID
volume consisting of drives whose combined sustained transfer rate at least matches that the
PCI bus’ bandwidth.

19

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Chapter 5

Synchronisation Using an External
Trigger

For our multiple viewpoint video capture we require that corresponding images captured by
each camera be accurately synchronised to one another. The highest frame rate at which we
intend to capture images is 30 fps, i.e. an image every 33.3̇ ms. Given this time interval, we
will consider images from different cameras to be out of sync if they are captured at instances
more than 2 ms apart. This allows for at most 6 % error for frame rates up to 30 fps.

Determining quantitatively the level of synchronisation between corresponding images
taken from different cameras with millisecond resolution requires very accurate timing infor-
mation that may not be available for certain methods of synchronisation. For this reason we
have also chosen to qualitatively estimate the level of synchronisation of each method by visu-
ally comparing the corresponding images — such a technique does not rely on the availability
of timing information.

Our standard qualitative test — which we shall present for all synchronisation
methods, including the current external triggering — involves our two colour Scor-
pion (SCOR-13SM) cameras being used to capture video of the same scene at a
resolution of 640x480 and a frame rate of 30 fps. The specific location of the
cameras (in terms of the FireWire bus/host PC to which they are attached) will
be determined by the synchronisation method in question.

The actual scene we have chosen to capture is a simple setup of a marker pen
being waved in front of a ruler. This pen-waving experiment will facilitate the
visual comparision of corresponding images as the marker pen’s position can be
determined directly in reference to the ruler’s markings. For the purposes of this
experiment we will assume that the hand waving the pen is moving at a rate
which would sweep out a 1 m arc in 0.5 s; that is, the pen is moving at 2 mm/ms.
It is important to note that this is purely an assumption based on a reasonable
estimate of the speed of the moving hand which we have made for the purposes
of visually estimating the degree of synchronisation as reported by the test.

20

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Figure 5.1: Externally triggering 6 cameras located on 3 FireWire buses across 2 PCs.

21

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Figure 5.2: Consecutive frames of a pen being waved in front of two cameras being triggered
externally.

5.1 Using an External Trigger

The Point Grey cameras we are using have general purpose I/O pins which can be configured
to trigger the start of image integration on a voltage transition. As illustrated in Figure 5.1,
using a TTL 5V periodic signal output from a 555 timer-based astable multivibrator circuit,
we are able to externally trigger the image acquisition of any number of cameras located on
different FireWire buses synchronously at a rate equal to the frequency of the trigger voltage.

5.1.1 External trigger results

Figure 5.2 shows 2 sequential frames of our pen-waving experiment. The cameras were at-
tached to different FireWire buses on different PCs. Despite the blur (which may be amelio-
rated by reducing the integration time), both the top and the bottom pairs of corresponding
images clearly show the marker in precisely the same position for left and right images, con-
firming that the cameras are synchronised. Indeed, aside from viewpoint differences between
the cameras, there is no visible disparity between the left and right images, suggesting that
the cameras are perfectly synchronised to one another.

Whilst we are able to visually confirm the synchronisation between the two cameras, it is
useful to be able to quantify the discrepancy (if any) between the times the images are taken
by the different cameras, and hence verify that the synchronisation satisfies our requirement
of no more than 2 ms difference. For cameras located on the same FireWire bus this task is
made easy by the Point Grey cameras with their FRAME TIMESTAMP functionality.

22

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

5.1.2 FRAME TIMESTAMP

Point Grey cameras such as the Scorpions we tested implement a time-stamping function
which allows captured images to be stamped with the value of the FireWire bus’ 32-bit
CYCLE TIME register at the instant the camera’s shutter is closed and integration for that
image is complete.1 This FRAME TIMESTAMP is embedded into the first 4 bytes of each image
captured.

With the 2 cameras attached to the same FireWire bus, we enabled time-stamping and
tested the synchronisation of externally triggered video capture by examining the correspond-
ing timestamps for each image for each camera. The exact synchronisation of the externally
triggered cameras was confirmed by the fact that each corresponding time-stamp was identical
for all video sequences tested at various frame rates.

Figure 5.3: CYCLE TIME register format. Source: [5], p. 63

Note however that we are unable to use this time-stamp comparison as a basis for syn-
chronisation tests when the cameras are attached to different FireWire buses. This is because
the CYCLE TIME value that the FRAME TIMESTAMP duplicates derives from a different physical
clock for each bus and, whilst they operate at the same frequency, their counters will have
been started at different times. The synchronisation of cameras located on different FireWire
buses can however be quantified by comparing relative FRAME TIMESTAMP values (given an
initial offset) if the different buses’ initial values are assumed to correspond precisely.

5.2 External Trigger Limitations

The synchronisation of multiple cameras spread across separate FireWire buses and PCs is
ideally performed using this external triggering technique except for one key limitation, which
we will now detail. The problem with using this method of camera synchronisation is that
externally triggering the cameras necessarily disables the usual isochronous data transfer mode
employed to stream video at constant rates. Instead, the cameras are forced into transferring
data asynchronously across the FireWire bus.

We hypothesize that when the cameras operate in their default isochronous mode they use
their on-board frame memory to buffer the current image whilst the previous image is being
transferred across the FireWire bus. This buffering allows the camera the full period between
frames to transfer the captured image. So if the cameras are capturing in their normal ‘free-
running’ (i.e. isochronous) mode at 30 fps, they have 33.3̇ ms between frames to transfer the
entire image across the bus. Returning to the example given in Section 2.3, this is done by
transferring 320 quadlets/packet per 125 µs cycle period as specified by the DCAM spec.

1Note that the CYCLE TIME register is simply an incremental counter of the FireWire bus’ 24.576 MHz clock
timing signal that all FireWire devices must implement.

23

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Figure 5.4: Timing of image acquisition when using an asynchronous external trigger. Source:
[6], p. 24 (adapted)

Figure 5.5: Difference in timing and bandwidth usage for normal ‘free-running’ isochronous
and externally triggered asynchronous capture modes.

If however, the cameras are being externally triggered, it appears that the on-board frame-
buffer is disabled and subsequently the advantage of having the full period between frames
to transfer the captured image is lost. Instead, this period is shared between the integration
time and the time required to transfer the captured image across the FireWire bus.

Figure 5.4 illustrates the timing of a capture event between external trigger signals. Notice
that the next external trigger may only be fired after the current frame has been entirely
transferred across the bus. This is a necessary restriction to ensure that the current image is
completely transferred before the next one is taken.

In order to satisfy the constraint imposed by the reduced image transmission period,
the camera must operate at a higher frame rate than its actual image acquisition rate. For
example, in order to perform 30 fps video capture, an externally triggered camera must be
running at 60 fps. In effect, externally triggered video capture requires the cameras to be
operating at twice the normal speed.

External triggering requires cameras to operate at twice the nominal

24

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

speed to achieve a given frame rate

Consider the example given in Section 2.3. It was shown that for 640x480 Y8
video at 30 fps it takes 30 ms of the possible 33.3̇ ms frame interval to transfer an
entire frame across the FireWire bus. But, if the cameras are externally triggered,
the on-board frame buffering is disabled and the integration time must be added
to the frame transfer time. Even if we are using a very small integration time, say
12.8 ms, this means that it will take 30 ms + 12.8 ms = 42.8 ms > 33.3 ms to
transfer each frame. If the next external trigger signal is given before this 42.8 ms
period (i.e. at 33.3̇ ms to achieve 30 fps), it will simply be dropped. Therefore
every second trigger signal is dropped and as a result the camera actually captures
at 15 fps and not the requested 30 fps.

The solution is to force the camera to capture at a higher frame rate than the
actual image acquisition rate. Referring again to Section 2.3, it was shown that
for 640x480 Y8 video at 60 fps it takes 15 ms to transfer an entire frame across the
FireWire bus. Now, if we add this time to the integration time we obtain 15 ms +
12.8 ms = 27.8 ms < 33.3 ms to transfer each frame. Now, if the next external
trigger signal is received at 33.3̇ ms the camera will be ready to receive it as the
previous frame will have already been transferred across the bus. Of course, at
60 fps, twice the bandwidth of the FireWire bus is being used as well. In this case,
it means that only one camera per FireWire bus is possible (as opposed to three
cameras when not using an external trigger).

Figure 5.5 illustrates the differences in timing and bandwidth usage between nor-
mal ‘free-running’ and externally triggered video capture for the given example
of 30 fps capture. The comparision highlights in particular the necessary bus idle
time caused by external triggering during which image integration is performed,
as well as the subsequent need for double the normal bandwidth due to the now
shortened time window in which the frame must be transferred.

The camera capture processes for both normal ‘free-running’ isochronous and the exter-
nally triggered asynchronous modes of image acquisition are summarised in Figure 5.6. The
reason externally triggered video capture must simulate the usual isochronous data transfer
mode using this ‘rushed’ asynchronous technique is due to the nature of the trigger signal
itself. Although we know that we are supplying a continuous periodic external trigger signal,
it remains nonetheless an asynchronous signal as far as the camera is concerned — the cam-
era only ever sees the current asynchronous trigger and is unable to preempt the arrival of a
possible future trigger. Therefore, it must not be allowed to buffer the captured image, but
rather it must ‘rush’ it across the bus at twice the usual rate in order to be ready for the next
trigger.

To summarise, we found it possible to externally trigger any number of cameras located on
different FireWire buses both within and across host PCs to capture perfectly synchronised
images. The drawbacks of using external triggering that we have observed are that (a) it
requires that the cameras be able to operate at twice the normal speed for any given frame
rate, and (b) subsequently double the usual FireWire bandwidth is required per camera.

25

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Figure 5.6: Flow diagram for normal isochronous and externally triggered asynchronous
modes.

Since the cameras we have chosen are capable of 640x480 at 60 fps and 1024x768 at 30 fps,
we are still able to achieve rates of 30 fps and 15 fps for the two video modes respectively.
However, instead of being able to have 3 cameras attached to the one FireWire bus at 640x480
and 2 cameras at 1024x768, the double bandwidth demands of an externally triggered system
requires one FireWire bus per camera.

26

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Chapter 6

Synchronisation of Cameras on the
Same FireWire Bus

A feature of the Point Grey cameras we tested is that they synchronise to within 125 µs of
each other when they are connected to the same FireWire bus. This synchronisation is done
at a hardware level and is only available when using the Point Grey proprietary (Windows
XP) drivers and the API libraries included in the C/C++ PGR FlyCapture SDK. According
to Point Grey,

. . . the grabbing of images will automatically be synchronized at the hardware
level using timing information provided by the 1394 bus.

There is no master camera to which the other cameras are synced. The way
synchronization is achieved is that each camera is constantly receiving the 1394
bus cycle timer information, and a register on the camera contains this cycle time
information. . . The camera firmware is designed to grab at selected intervals of the
1394 cycle time, so each camera on the bus has the same cycle time info and can
grab at the same cycle time interval[4].

This explanation given by Point Grey remains vague on the details of implementation. By
testing the cameras and writing our own capture program using the PGR FlyCapture SDK
we have arrived at a probable explanation of how the synchronisation actually works; which
we now present in detail.

6.1 How Automatic Synchronisation Works

To follow our explanation of how the automatic intra-bus camera synchronisation is per-
formed, it is instructive to study the pseudo-code of our capture program, given in Figure
6.1. The code is fairly self-explanatory; the flycapture* API functions are unambiguously
named.

After the initial setup for the cameras is complete, a call to flycaptureStartLockNext()
is made for each camera on the FireWire bus. Each of these calls starts the isochronous
DMA streaming of images from the camera to the frame buffers in main memory (Figure

27

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Figure 6.1: Pseudo-code for capture.

28

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Frame Rate Frame Period Equivalent cycle count
7.5 fps 133.3̇ ms 1066 or 1067
15 fps 66.6̇ ms 533 or 534
30 fps 33.3̇ ms 266 or 267
60 fps 16.6̇ ms 133 or 134

Table 6.1: Standard frame rates and their equivalent cycle count values.

4.1). The ‘lock next’ mode ensures that the next full frame buffer (i.e. complete image in
memory) is locked and not able to be overwritten until the user explicitly unlocks it with
flycaptureUnLock().

Notice that the flycaptureStartLockNext() calls for each camera are made sequentially,
not concurrently. As a result, if the cameras actually started integrating images immediately
after their own flycaptureStartLockNext() call, operating system and user-space process
latencies between calls would mean that they would not be synchronised to one another.
If, however, the CYCLE TIME register value of the IEEE-1394 bus at the instant that the
first camera began integrating images was made available to the subsequent cameras, these
cameras could potentially use this information to synchronise themselves to the first camera.

Figure 5.3 shows that the 32-bit CYCLE TIME register is divided into 3 fields contain-
ing wrapping counters: second count, cycle count and cycle offset. Camera synchro-
nisation is quoted accurate to within 125 µs which indicates that the cycle count value is
used for synchronisation purposes. Now imagine that flycaptureStartLockNext() is called
for the first camera on the FireWire bus and it decides to start integrating images when
CYCLE TIME, cycle count reaches 0042. The camera’s firmware instructs it to store this
initial cycle count value.

When flycaptureStartLockNext() is called for any subsequent cameras, these cameras
first query the bus for any instance of initial cycle count. When initial cycle count
= 0042 is returned to these cameras, their firmware will instruct them begin their im-
age integration at some time initial cycle count + n * frame rate cycle count, where
frame rate cycle count is the equivalent cycle count value for the given frame rate. For ex-
ample, at 30 fps, frame rate cycle count = 266 or 267 since 266 × 125 µs = 33.25 ms
and 267 × 125 µs = 33.375 ms. A list of frame rates and their equivalent cycle count
values is given in Table 6.1.

Starting integration at initial cycle count + n * frame rate cycle count ensures
that these subsequent cameras are synchronised to the first camera to within 125 µs, but
possibly offset by an integral multiple of a frame period. Referring back to the pseudo-code,
we notice that, immediately following the flycaptureStartLockNext() calls and directly
before the image grab loops, a call to flycaptureSyncForLockNext() is made. This func-
tion accounts for the possible frame offsets introduced by n * frame rate cycle count by
skipping the required number of frame buffers for each camera started before the last camera.
This effectively aligns the frames being captured by each camera on the FireWire bus, thereby
synchronising the image acquisition of all the cameras to one another.

29

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Figure 6.2: Consecutive frames of a pen being waved in front of two cameras located on the
same FireWire bus.

6.2 Automatic Synchronisation Results

To visually test this hardware-level intra-bus synchronisation we again performed our stan-
dard pen-waving experiment. For this method the two cameras were attached to the same
FireWire bus and configured to stream in normal isochronous mode. Notice again that the
corresponding images from left and right cameras appear perfectly synchronised to one an-
other for each frame.

Since the cameras were located on the same FireWire bus, we were able to quantify the
synchronisation as explained in Section 5.1.2 with the image time-stamp values. As opposed
to the external triggering method, we found the Point Grey cameras’ automatic intra-bus
camera synchronisation to not always be precise. The image time-stamps often reported
the cameras to be one cycle count out of sync. But this was to be expected since the
guarantee given was that automatic synchronisation was accurate to within 125 µs (i.e. one
cycle count). Table 6.2 shows the average percentage of frames that were out of sync by
one cycle count for 500, 1000 and 1500 frame capture sequences at various resolutions and
frame rates.

Note that the cameras never reported themselves to be out of sync by more than one
cycle count. Given that 125 µs is only 1/16th of our 2 ms ‘out of sync’ definition, we
consider these synchronisation results to be quite acceptable.

30

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Resolution 640 x 480 1024 x 768 1280 x 960
No. Frames 500 1000 1500 500 1000 1500 500 1000 1500

1.875 fps 16 15 13
3.75 fps 14 13 12 14 12 12 14 13 14
7.5 fps 13 12 12 12 12 12 11 12 13
15 fps 10 11 10 11 10 11
30 fps 12 11 11

Table 6.2: Percentage of images out of sync by 125 µs for various resolutions and frame rates
for video capture sequences of 500, 1000 and 1500 images.

31

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Chapter 7

Synchronisation of Cameras on
Different FireWire Buses

In Chapter 5 we explored the possibility of using an external trigger to synchronise multiple
cameras located on different FireWire buses both within and across host PCs. It was shown
that such a synchronisation method functions ideally except for the bandwidth limitations
imposed by the asynchronous mode required by externally triggered cameras.

Next, in Chapter 6, we showed how Point Grey cameras are able to overcome these band-
width limitations by synchronising to one another at the hardware level in normal isochronous
mode. Unfortunately this method of synchronisation is restricted to cameras located on the
same FireWire bus, which limits us to only 2–3 synchronised cameras.

With the multiple view digital video capture system that we are developing we require a
scalable means of synchronising any number of cameras attached to different FireWire buses
located on different host PCs. Whilst the external triggering method functions perfectly, we
would prefer to avoid the bandwidth limitations that it necessarily imposes. To achieve this,
we now explore methods of synchronising separate FireWire buses which are each hosting
automatically intra-bus synchronised Point Grey cameras.

7.1 Point Grey Sync Unit

For the purpose of synchronising cameras across FireWire buses, Point Grey have developed a
‘Sync Unit’ which it claims is able to effectively synchronise the image acquisition of cameras
attached to different IEEE-1394 buses. It is important to note here that this Sync Unit is

Figure 7.1: Point Grey Sync Unit.

32

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Figure 7.2: The Sync Unit bridges timing information across 2 buses.

Figure 7.3: Synchronising 4 cameras across 2 buses using the Sync Unit.

not a generic IEEE-1394 camera synchronisation device and has been designed specifically to
work with particular Point Grey cameras only (including the Fleas and newer model Scorpion
SCOR-13FF but not the old SCOR-13SM). Information on the Sync Unit may be found at
http://www.ptgrey.com/products/sync/index.html.

According to Point Grey, it essentially works by bridging the timing information between
the 2 buses to which it is connected. An example of this functionality is given in Figure 7.3.
In this configuration, the unit is being used to synchronise 4 cameras across 2 PCs (2 cameras
per FireWire bus per PC). Note that each side of the Sync Unit only ‘sees’ the effective
FireWire bus to which it is attached.

If more than 2 IEEE-1394 buses are required to be synchronised, multiple Sync Units may
be daisy-chained together to form an independent ‘synchronisation bus’. Figure 7.4 shows
an example of such a configuration. Notice that for more than 2 buses, the number of Sync
Units required is equal to the number of IEEE-1394 buses being synchronised.

7.1.1 How the Sync Unit Works

Point Grey does not provide any specific details on how these Sync Units work. However, given
our explanation of how the Point Grey cameras achieve intra-bus synchronisation (Chapter 6),

33

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Figure 7.4: Synchronising 6 cameras across 3 buses by daisy-chaining 3 Sync Units.

34

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

we argue that the inter-bus synchronisation functionality of the Sync Unit may be explained
as a logical extension. The following is our hypothesis of how we believe the Sync Unit
functions in light of our experiments and observations.

It appears that the Sync Unit operates by passing on the CYCLE TIME register information
from the first camera seen by it to any subsequent cameras. These cameras then base the
timing of their image acquisition on this value, effectively synchronising themselves to the
first camera.

As has been previously explained, the timing of any IEEE-1394 bus is governed by it’s
own 24.576 MHz clock which, for Point Grey cameras, is incrementally counted by their 32
bit CYCLE TIME register. Obviously the clocks of different buses are going to be inherently
out of sync as they are running off separate physical clocks which will most likely have been
started at different times.

The first task of the Sync Unit then must be to determine the offset between the clock
values of the 2 separate buses attached to it. To achieve this, the device must take a ‘snapshot’
of the 2 buses’ CYCLE TIME registers at a given moment. Say, for example, that at time
tsnapshot the values are bus0 cycle count = 0021 and bus1 cycle count = 0347. This gives
bus offset = 326.

Having determined the clock offset between the 2 buses attached to the Sync Unit, now
imagine that in Figure 7.3 the first camera to be attached to either of the PCs is the top one
on the left hand side. Say flycaptureStartLockNext() is called for this camera and it starts
streaming at initial cycle count = 0042. Now when the bottom camera is attached and
flycaptureStartLockNext() is called, its firmware instructs it to start streaming only at
some time initial cycle count + n * frame rate cycle count (Section 6.1). Thus the
streaming of the 2 cameras on the left side bus is effectively synchronised.

This initial cycle count value is propagated across the device to the bus on the other
side. Given this value and the bus offset, when flycaptureStartLockNext() is subse-
quently called for cameras attached to the right side bus, their firmware will instruct them to
start streaming only at some time initial cycle count + (n * frame rate cycle count)
+ bus offset. Thus their image acquisition will be effectively synchronised to that of the
cameras on the left side bus. This process extends readily to the configuration of daisy-chained
Sync Units presented in Figure 7.4. Here the initial cycle count value is propagated along
the length of the left side ‘synchronisation bus’ so that cameras attached to the right side
FireWire buses may all be synchronised to one another.

7.1.2 Sync Unit Issues

These Sync Units developed by Point Grey are clearly ideal for the synchronisation of multiple
cameras across multiple FireWire buses that we require, except for a couple of key factors.
Firstly, the Point Grey Scorpion SCOR-13SM cameras which we have are not actually com-
patible with the Sync Unit. Furthermore Point Grey have not indicated that they intend to
implement such functionality in the near future. Fortunately, the Point Grey Flea cameras
which we intend to use for all additional cameras to our system are indeed compatible with
the device and thus able to be synchronised using the Sync Unit. However this still leaves
us with the problem of how to synchronise a heterogeneous mix of Sync Unit compatible and
non-compatible cameras.

35

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Secondly, synchronising cameras with Point Grey Sync Units is far from an inexpensive
exercise. As explained above, for any more than 2 FireWire buses, the number of (rather
expensive) Sync Units must equal the number of buses required to be synchronised. Note
finally that, as of yet, we have not been able to test the functionality of the Sync Unit because
we only have multiple SCOR-13SM cameras, which are not supported by the device.

7.2 Software Synchronisation

To replicate the Sync Unit’s inter-bus synchronisation functionality in software as we have
explained it, we require the ability to control camera capture timing at a low level. More
specifically, we require that flycaptureStartLockNext() be able to accept a user-defined
cycle time value as an argument. Unfortunately this functionality is not provided by the
PGR FlyCapture SDK, nor is it found in other 1394-based digital camera control libraries such
as libdc1394.

The alternative method of inter-bus synchronisation we devised involves networking the
separate host PCs and using a software-based trigger to start all the cameras capturing
at the same time. We assume that the cameras located on the different FireWire buses
are automatically synchronised with one another at the hardware level (Chapter 6). Thus
rather than triggering each individual camera at the same time (as is done with the external
triggering), we simply need to ensure that each FireWire bus is triggered to begin streaming
at the same time.

7.3 Using an Ethernet trigger

The host PCs we are using for video capture are interconnected via 10 Mbit/s Ethernet using a
network switch. To implement the software-level synchronisation trigger, we used the Winsock
networking API to modify our capture program (Figure 6.1) and write a corresponding
trigger program.

Each host PC is running an instance of the ‘client’ capture program specifically configured
for the cameras attached to its FireWire bus. Once capture has completed the initial setup
for the cameras, and immediately before any of the flycaptureStartLockNext() calls are
made, it blocks and waits for the ‘trigger signal’ from the ‘server’ trigger program which is
also running on one of the host PCs.

The ‘trigger signal’ itself is simply a UDP broadcast message sent by trigger to the
network’s directed broadcast address on a specified port. Whilst they are blocking, the client
capture programs are listening to the same port for the broadcast message from the server
trigger. The instant the broadcast message is received, the capture programs continue
execution with the calls to flycaptureStartLockNext() to start the cameras streaming
isochronously. Thus, if all the instances of capture are blocking before the trigger signal is
sent, flycaptureStartLockNext() should be executed synchronously for all host PCs upon
the broadcast message’s arrival.

36

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Figure 7.5: Average one-way latency times observed for UDP messages between server and
client.

7.3.1 Latency Under Windows XP

Of course, the timing of the ideal situation described above is, in practice, subject to latencies
introduced by the Ethernet network and by the Windows XP operating system on which
the capture and trigger programs are running. To ensure that we achieve synchronisation
results as close to the ideal as possible, our system must account for these introduced latencies.

Windows XP is not a real-time operating system — the user it not guaranteed instan-
taneous execution of a process on demand. Instead, it is a multitasking operating system
based on a preemptive multitasking kernel. The kernel handles the simultaneous execution of
multiple processes/threads by scheduling their execution according to their ‘priority levels’.
It is also able to ‘preempt’ when a certain process/thread should be executed.

Given that our trigger and capture programs operate within a multitasking environ-
ment, we face the possibility that, contrary to our expectations, capture may not respond
instantaneously to the trigger signal sent by trigger because (a) the operating system may
have scheduled some other process/thread with a higher priority to execute at that instant or
(b) the operating system may have put the capture process to ‘sleep’, in which case it must
be ‘awoken’ before it can begin executing. Due to the time-critical nature of our task, the
latencies produced by either situation may be large enough to invalidate the synchronisation.
In particular, waking up a thread in Windows XP takes tens of milliseconds [8], whereas we
require synchronisation to be within 2 ms.

We attempt to minimise the potential for such latencies by using the Windows API func-
tion SetThreadPriority() to set the priority levels to THREAD PRIORITY TIME CRITICAL for
capture and trigger — the highest possible user-space priority level (only the few kernel-
space threads using REALTIME PRIORITY CLASS have higher priority).

Also, to ensure that the capture processes are ‘awake’ at the time the trigger signal
is sent, trigger first sends a series of identical preamble messages to each host PC before

37

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

broadcasting the actual trigger signal. We tested a system setup comprising of 4 nodes —
3 client PCs running capture and 1 client/server PC running both capture and trigger.
Using the Windows API function QueryPerformanceCounter() to obtain high precision time
measurements, we were able to measure the average round-trip latency and (hence estimate
the average one-way latency) from trigger to each capture node over a series of 25 preamble
messages, the last one of which being the actual broadcast trigger signal. The results are
displayed in Figure 7.5 (note that Node 1 is the client/server PC).

The graph clearly shows that the latency between server and client reduces steadily up
to the 15th preamble message. The regularity observed may be explained as the preemptive
kernel ‘learning’ to be ready for the next message. The lack of variation in latency times after
the 15th preamble message suggests that the capture programs are now guaranteed to be
‘awake’ and ready to receive the final broadcast trigger signal. Notice that there is negligible
difference in one-way latency time from the server to the client PCs by the 25th message,
meaning that they should all receive the trigger signal at almost exactly the same time. The
PC which is running both the client and server processes naturally has a lower latency (since
it is effectively sending messages to itself) and will thus receive the trigger signal before the
other client PCs. But, as seen in the graph, it will only do so approximately 250 µs before
the others, meaning that all 4 nodes are still synchronised to within a small fraction of 2 ms
as we require.

We extensively tested our trigger/capture with an actual experimental setup consisting
of two cameras, each attached to the FireWire buses on different host PCs, being software-
triggered to stream video synchronously. Over a sample of 25 tests, the reported time differ-
ence between receiving the trigger signal for the two PCs (and hence the degree of synchro-
nisation between the FireWire buses) was on average ≈ 150 µs, with a minimum of ≈ 100 µs
and maximum of ≈ 250 µs. Again, these values are but a small fraction of our 2 ms allowable
discrepancy, and thus the trigger/capture Ethernet synchronisation method satisfies our
synchronisation requirements.

7.3.2 Ethernet Synchronisation Results

To visually test the accuracy of our Ethernet synchronisation we once again performed our
standard pen-waving experiment. For this method the two cameras were attached to different
host PCs. They were triggered to stream in normal isochronous mode by the Ethernet trigger.
Observing Figure 7.6 closely, it can be seen that the left and right images for the consecutive
frames shown are clearly out of sync (an observation that was not able to be made for the
previous external triggering and automatic synchronisation tests).

The noticeable difference in position of the pen between left and right images seen in Figure
7.6 suggests that the ≈ 150 µs average time discrepancy for the Ethernet synchronisation
stated above cannot fully account for the actual discrepancy observed in the image acquisition
times of the different cameras. The difference in position of the pens appears to be about
4 mm. From the assumptions about the speed at which the hand holding the pen was being
waved (Chapter 5), at 2 mm/ms this 4 mm discrepency equates to a 2 ms difference in image
acquisition times — our maximum allowable value to still be considered synchronised.

Whilst we still consider this degree of synchronisation to be acceptable, it highlights a fun-
damental flaw in the premise upon which we based the Ethernet synchronisation method. Our

38

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Figure 7.6: Consecutive frames of a pen being waved in front of two cameras attached to
different host PCs and being triggered to capture isochronously over Ethernet.

assumption was that the call to flycaptureStartLockNext() started the camera streaming
immediately. On the contrary however, it appears that flycaptureStartLockNext() takes
a non-deterministic period of time to initiate the video streaming. This means that whilst
trigger reports that there is only a ≈ 150 µs discrepancy between the times that the trigger
signal is received by the various instances of capture, any given camera may take up to a
couple of milliseconds to actually start its streaming in response to the broadcast trigger
signal.

7.3.3 Further Synchronisations Tests

Digital Clock

We replicated the digital clock synchronisation test that Rai et al. [7] performed to test the
synchronisation of their similarly software-triggered multiple FireWire camera system. In our
experiment, we tested our trigger/capture Ethernet synchronisation method using all four
of our Scorpion cameras (two colour and two mono SCOR-13SMs). We tested a two host PC
system, attaching the two colour cameras to the FireWire bus on one PC and the two mono
cameras to the FireWire bus on the other. All the cameras were configured to capture video at
a resolution of 640x480 and a frame rate of 30 fps. They were then pointed at a CRT computer
screen (85 Hz refresh rate) which was displaying a running digital stopwatch program (with
millisecond resolution). The two PCs were then software-triggered to synchronously capture
20 s of video (isochronous mode). Figures 7.7 and 7.8 show images from all four cameras for
frames near the start and end of the capture period respectively. Notwithstanding ghosting
effects of the digits due to the refresh rate of the screen, clearly all four cameras are displaying

39

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Figure 7.7: Stopwatch images from all 4 cameras for a frame near the start of capture. The
top-left and bottom-left colour cameras are both located on the same FireWire bus on one host
PC. The top-right and bottom-right mono cameras are both located on the same FireWire
bus on a different host PC.

Figure 7.8: Stopwatch images from all 4 cameras for a frame near the end of capture.

40

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

the same number in both frames, visually indicating that they are synchronised to within the
millisecond accuracy of the digital stopwatch.

But exactly how synchronised were the cameras? Since each pair of cameras attached
to a particular FireWire bus was operating in isochronous mode, their automatic hardware-
level synchronisation was readily verified by observing the image time-stamp values (Section
6.2). As expected, for each FireWire bus, the attached cameras were synchronised to one
another to within 125 µs. However we cannot be as sure of the inter-PC synchronisation
accuracy. As seen in Section 7.3.2, our Ethernet based inter-bus synchronisation method was
only accurate to within an estimated 2 ms — such a synchronisation disparity could very well
be lost in the refresh rate of the displayed digital clock values. Ultimately, the accuracy of
testing synchronisation using a computer-based digital clock is limited in comparison to the
pen-waving experiment we peformed earlier.

Milk Drops

As another, more aesthetically appealing test of the degree of synchronisation achievable using
the Ethernet trigger, we performed the ‘milk drop’ experiment shown in Figures 7.9 and 7.10.
Again, we used 2 colour cameras attached to different host PCs and triggered them to stream
in normal isochronous mode with the Ethernet trigger. The image resolution was 640x480
and the frame rate 60 fps. The cameras were placed next to one another, pointing at a bowl
of milk. We then captured video of a drop of milk falling into the bowl and the resultant
splashing effect. From top to bottom, the figures show 10 sequential frames of the milk
splashing as seen by both left and right cameras. Observing closely the shapes of the splashes
we see clearly that the corresponding images from each camera are nearly but not perfectly
synchronised. As an estimate of the level of synchronisation, let us assume that the milk drop
hits the surface at anywhere between 1–2 mm/ms (a reasonable estimate considering that it
was dropped from about 30 cm above the bowl and assuming that it’s acceleration rate is
soley due to gravity). Under this assumption, the shape difference may be explained as one
camera capturing the scene at 1–2 ms before the other one — a result consistent with our
expectations of our achievable software-based synchronisation levels.

7.4 Remarks on the Ethernet Synchronisation Results

Although we did not use it for our Ethernet synchronisation tests, the discrepancy between
capture times could be accurately measured using the following technique. With the cameras
located on different FireWire buses, the bus offset value could be determined by externally
triggering all the cameras to take a ‘snapshot’ at a given time and then examining the resul-
tant image time-stamp values to calculate the timing offset between buses. Now when the
cameras are synchronised by the Ethernet trigger, the image time-stamp values along with the
determined bus offset value may be compared to calculate the synchronisation discrepancy
between FireWire buses.

Finally, it must be noted that although the pen-waving and milk drop tests revealed that
our Ethernet synchronisation was significantly less accurate than both the external trigger
method and the automatic synchronisation, these tests were specifically chosen to highlight
synchronisation accuracy — they are not representative of the video capture application that

41

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Figure 7.9: Milk drop tests 1 and 2. Left and Right: (Top to bottom) 10 consecutive frames
of the result of a milk drop hitting a bowl of milk as captured by two colour cameras located
on different host PCs and being triggered to capture isochronously over Ethernet.

42

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Figure 7.10: Milk drop tests 3 and 4.

43

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

we intend to perform with our multiple viewpoint system. Ultimately we will be recording
the movements of a human subject in a large volume of space whose scale will most likely
diminish the effect of these observed synchronisation discrepencies, meaning that the ≈ 2 ms
synchronisation accuracy our method achieves is actually quite acceptable for our purposes.

7.5 Software Synchronisation Alternative — NTP

We conclude this chapter with a few remarks about an alternative method we explored to
synchronise the capture from cameras attached to different host PCs. The idea here was
simply to synchronise the actual system clocks of the networked host PCs using NTP and then
schedule them to call flycaptureStartLockNext() (and hence start the cameras capturing)
at a given time. The synchronised system clocks would thus effectively replace the Ethernet
trigger signal.

NTP (Network Time Protocol) is a TCP/IP protocol used to synchronise the clocks of
computer systems over packet-switched, variable-latency data networks such as LANs and the
Internet. NTP clients run a daemon which operates by exchanging time-stamp packets with
its configured NTP server(s), adjusting the local clock according to an algorithm based on the
observed variations in latencies of the time-stamp packets. The NTP algorithm is particularly
robust with the current version (NTPv4) being able to maintain clients’ times synchronised to
within 10 ms of their server(s) over the Internet, with the possibility of achieving accuracies
of 200 µs or better under ideal conditions in LANs [9]. For a concise introduction to NTP
refer to [2].

Tests running the NTP client on our network indicated that we were only able to syn-
chronise the system clocks of the host PCs to within ≈ 10 ms at best, rather than the quoted
200 µs or less accuracy. Note that this was most likely due to the fact that we were syn-
chronising to an external NTP server as we were unable to set up our own internal NTP
server. In any case, the ≈ 150 µs average time difference achieved by our trigger/capture
method betters these figures. Furthermore, as shown in Section 7.3.2, the accuracy of the the
Ethernet/NTP synchronisation is overshadowed by the non-deterministic time in which the
cameras actually begin their image acquisition once flycaptureStartLockNext() is called.

44

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Chapter 8

Conclusion

In this report we have explored at length the issues involved in designing a system capable of
synchronised multiple viewpoint digital video capture using FireWire cameras and standard
PCs. In particular we have explained how the FireWire system architecture facilitates the
streaming of uncompressed digital video at constant frame rates. We provided a survey of
the features and capabilities of FireWire digital cameras that we used and considered for
our multiple camera system. We also examined the various hardware issues that arise when
interfacing FireWire cameras to host PCs for the purposes of streaming to disk. Finally
we explored and tested various methods of performing the inter-camera synchronisation that
we require for our system, including using an external triggering circuit to synchronise the
cameras directly, as well as networking the host PCs of the cameras and using an software-
based trigger to synchronise the cameras indirectly.

Based on the findings of this report, we now conclude by summarising the three possible
design options we will consider for implementing our multiple viewpoint digital video capture
system. Regardless of the specific design option, the cameras used for the system will be
capturing video at either a ‘low resolution’ of 640x480 and a frame rate of 30 fps or a ‘high
resolution’ of 1024x768 and a frame rate of 15 fps. Furthermore the system will guarantee
that no video frames are dropped by any of the capturing cameras or their host PCs.

Combining our 4 existing Point Grey Scorpion SCOR-13SM cameras with the Point Grey
Flea cameras we have ordered, our synchronised multiple camera system will be designed
according to one of the following options:

1. External Trigger — The inter-camera synchronisation will be performed to exact
accuracy using an external trigger circuit we have built. Each individual camera we
use will require it’s own FireWire bus. A maximum of 3 FireWire buses and hence 3
cameras will be able to be controlled by any one host PC.

2. Point Grey Sync Unit — The inter-camera synchronisation will be performed to an
accuracy of 125 µs using Point Grey Sync Units. Each FireWire bus will require its
own Sync Unit and will be able to handle 2 cameras capturing at high resolution or
3 cameras capturing at low resolution. Once again, a maximum of 3 FireWire buses
will be able to be controlled by any one host PC, allowing for up to 9 cameras to be
attached to a given host PC.

45

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

3. Ethernet Trigger — The host PCs will be interconnected by an Ethernet network.
No special hardware will be required since the inter-camera synchronisation will be
performed by a software-based trigger broadcast to all the host PCs over the network.
However, the accuracy of synchronisation for this method will only be guaranteed in the
order of 1–2 ms. As with the previous method, each FireWire bus will be able to handle
2 cameras capturing at high resolution and 3 cameras at low resolution, and again each
host PC will be capable of controlling 3 FireWire buses and hence up to 9 cameras.

Note finally that for all options, if any more than one FireWire bus per host PC is to be
implemented, a striped RAID volume is the recommended storage system for that PC. This
is to ensure it’s ability to write out the video streams it is receiving to disk in a timely manner
without dropping any frames.

Each of these options has its advantages and disadvantages in terms of synchronisation
accuracy, implementation cost, and ease of use. We will further consider each of the options
in light of budget constraints and hardware availability in the near future as we progress
towards completing the multiple viewpoint video capture system.

46

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

Bibliography

[1] D. Anderson, FireWire Systems Architecture: IEEE 1394a, 2nd ed. Reading, Mass.:
Harlow : Addison-Wesley, 1999.

[2] D. Deeths and G. Brunette, “Using NTP to Control and Synchronize System
Clocks - Part 1: Introduction to NTP,” July 2001. [Online]. Available: http:
//www.sun.com/blueprints/0701/NTP.pdf

[3] F. Dierks, “Analog Goes Digital,” 2002. [Online]. Available: http://www.baslerweb.com/
popups/888/Analog Goes Digital.pdf

[4] PGR FlyCapture Single-Lens Digital Video Camera System User Manual and API Refer-
ence, Point Grey Research, Oct. 2004.

[5] PGR IEEE-1394 Digital Camera Register Reference, Point Grey Research, Sept. 2004.

[6] PGR Scorpion Technical Reference Manual, Point Grey Research, Sept. 2004.

[7] P. K. Rai, K. Tiwari, P. Guha, and A. Mukerjee, “A Cost-Effective Multiple Camera Vision
System using FireWire Cameras and Software Synchronization,” in 10th International
Conference on High Performance Computing, Hyderabad, India, Dec. 2003.

[8] G. Wideman, “Precision Timing Under Windows Operating Systems,” Mar. 2000.
[Online]. Available: http://www.wideman-one.com/gw/tech/dataacq/wintiming.htm

[9] Wikipedia, the free encyclopaedia, “Network Time Protocol,” 2004. [Online]. Available:
http://en.wikipedia.org/wiki/Network Time Protocol

47

MECSE-16-2004: "Using Synchronised FireWire Cameras For Multiple Viewpoint ...", J. U and D. Suter

