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ABSTRACT However, the simple Gaussian prior 

cannot fit well the marginal density of the 
wavelet coefficients, which tend to be dominated 
by a few large ones. The actual density of the 
wavelet coefficients usually has a marked peak at 
zero and heavy tails, and it is strongly non-
Gaussian. The Gaussian mixture model (GMM) 
[4] and the generalized Gaussian distribution 
(GGD) [9] are the common tools for modeling 
this non-Gaussian property of the wavelet 
coefficients. Although GGD is more accurate in 
fitting the actual density of the wavelet 
coefficients than GMM, the latter is preferred in 
this paper due to its simple form. 

Statistical modeling in the wavelet 
domain has proven its usefulness, as can be seen 
in image denoising. The index of PSNR and the 
visual quality are both improved, compared with 
Donoho and Johnstone’s wavelet threshold 
method. In [3], a pixel-adaptive Bayesian (PAB) 
denoising approach in the wavelet domain was 
proposed, which favorably compares with hidden 
Markov model (HMM) based approaches. 
However, the denoised images also suffer from 
the Gibbs-like artifacts, like ringing around the 
edges and speckles in the smooth regions. In this 
paper, we extend the PAB approach [3] to shift-
invariant (SI) wavelet denoising in order to 
reduce these unpleasant artifacts. The 
experimental result shows that not only is the 
visual quality greatly improved but also a PSNR 
gain of about 0.7~0.9 dB is obtained. The 
proposed approach, called siPAB, outperforms 
siHMT, which is a competitive SI wavelet 
denoising approach, by 0.1~0.5 dB. 

Moreover, wavelet coefficients can not be 
independently treated, although the orthogonal 
wavelet transform can be viewed as an 
approximate Karhunen-Loeve transform and 
tends to approximately decorrelate the image. 
The reason is that other joint statistics, such as 
clustering, persistency, decay property across 
scale, and strong persistence at finer scales [10], 
exist between the wavelet coefficients of real-life 
images. These statistical properties in the 
wavelet domain, like interscale dependency [6, 
10] and intrascale dependency [8], have been 
successfully applied in image denoising. In 
particular, the hidden Markov tree (HMT) was 
employed by Crowse et al. [6] to capture the 
interscale dependency. A disadvantage of HMT 
is the computational burden in the training stage. 
In order to overcome this computational 
problem, a simplified universal HMT, named as 
uHMT [10], was proposed by introducing nine 
meta-parameters. Although the training stage is 
not needed in uHMT, its performance is close to 
that of the more complicated HMT. In [3], a new 
property of parent/children-type statistics in the 
wavelet domain was analyzed and a new 
approach (PAB) was proposed. Noting that the 
density of the wavelet coefficients can be well 
fitted by a 3-mode GMM, where the variances 
for the 3 modes are linearly dependent on their 
parent, the PAB approach dispenses with the 
HMM and yet the performance favorably 
compares with HMM based approaches, like 
HMT and uHMT [3]. The reason is that the 3-
mode GMM captures most of the interscale 
dependency of real-life images. Secondary 
properties (non-Gaussianality and persistency) 
[10], and the tertiary properties (decay property 
across scale and strong persistence at finer 
scales) [10], are also explicitly considered in [3]. 

Keywords: Shift-invariant wavelet 
transform, image denoising, interscale statistics. 

I.  INTRODUCTION 
Recently, much effort [1-4, 6, 8-10] has 

been devoted to signal or image Bayesian 
denoising in the wavelet domain. Wavelet-based 
image denoising typically consists of three steps: 
discrete wavelet transform (DWT), the actual 
denoising process of the noisy wavelet 
coefficients, and inverse discrete wavelet 
transform (IDWT). Irrespective of what wavelet 
is employed, the first and the last steps are 1-1 
mappings, and are of no interest in this paper. 
Only the processing of the noisy wavelet 
coefficients will be studied in the following 
sections. In a general Bayesian wavelet 
denoising approach, as followed here, a prior is 
first specified for the wavelet coefficients of the 
unknown image, and then the Bayesian estimate 
is computed. 

Consider a signal x, which is 
contaminated with noise n, so that one 
observes nxy +=

,0(~ Nn σ

. Assume 

, . The well-known 
minimal mean squared error (MMSE) estimate is 
as follows [8]: 
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  The images denoised by the PAB 
approach suffer from some visual artifacts, 
usually in the form of Gibbs-like ringing around 
the edges and speckles in smooth regions, as is 
true of other traditional (maximally decimated) 
wavelet denoising approaches. The reason for 
this unpleasant phenomenon lies in the lack of 
shift invariance (SI) in the traditional wavelet 
transform. To overcome this drawback, Coifman 
and Donoho [5] proposed SI wavelet denoising. 
The strategy for this SI wavelet denoising is 
cycle-spinning [5]. By cycle-spinning, the 
ringing and speckle effects can be visibly 
reduced and the visual quality can be greatly 
improved, especially when the noise is strong. In 
terms of PSNR, an improvement of about 0.8~1 
dB [2, 10] has been reported by employing SI 
wavelet denoising. 

  In this paper, we extend the PAB 
approach [3] to SI wavelet denoising, which we 
call siPAB. In section II, we review the modeling 
of the parent-children statistical property in the 
PAB approach [3]. In section III, we extend the 
PAB approach to SI wavelet denoising. In 
section IV, we analyze the performance of this SI 
wavelet denoising approach, by the comparison 
with the PAB approach [3] and with siHMT [10].  

II.  A review of the PAB approach 
A four-level decomposition of the image 

Lena is shown in Fig.1, where white pixels 
denote large-magnitude coefficients. Interscale 
and intrascale dependencies can be easily 
observed in fig. 1, where large magnitude 
coefficients cluster near the edges in all bands 
and in all levels.  

 
Fig. 1 Four-level wavelet quad-tree decomposition of the 
Lena image. 

  In [3], only interscale dependency was 
employed. Given their parent, wavelet 

coefficients are modeled as a 3-mode GMM. The 
variances for these 3 modes in the GMM are 
linearly dependent on their parent, as is different 
from HMM-based approaches, where the 
variances, predefined in uHMT [10] or obtained 
by expectation-maximization algorithm in HMT 
[6], are constant. Fig. 2 is a typical conditional 
density of the child in the vertical band of level 
1. The crux of the method in [3] lies in obtaining 
this conditional density, which shows the 
statistics of the interscale dependency between 
children and their parent. It consists of two steps: 
variance estimation and Gaussian mixture 
modeling. 

 
Fig. 2 The conditional density of the child in the vertical band 
of level 1, the magnitude of whose parent coefficient lies 
between 10 and 11. The solid line denotes the conditional 
density, the dotted one for the fixed mixture model, and the 
dashed one for the Gaussian model. 
A. Variance estimation 

  In PBA [3], the following linear formula 
is employed to estimate the variance field: 

BAmpc +=σ , where cσ  is the variance of the 
child c and m  is the magnitude of the 
corresponding parent p. The rationale comes 
from the intuitive observation that large 
coefficients persist across scales. So, it can be 
assumed that the children are of large/small 
variance if their parent has a large/small 
magnitude, since the wavelet coefficient can be 
regarded as zero-mean. Fig. 3 shows this kind of 
dependency of level 1 on level 2. Other levels 
share this near-linear property. Usually, in the 
same level, the horizontal band and the vertical 
band show similar statistics, while the diagonal 
band has a smaller variance assuming the 
magnitude of the parent is same, as it can be seen 
from fig. 3. So, the true model becomes 

p

bandlevel , bandlevelm ,p Bbandlevelc A,, +=σ . For the 
coarsest level, no parent exists. The parent-on-
child dependency is utilized to estimate the 
variance field for the coarsest level. A similar 
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linear relationship is specified for the parent-on-
child dependency, with different A’s and B’s. 
Table 1 lists the experimental parameters for A 
and B [3]. 

 
Table 1: Parameters for interscale child-on-parent/parent-on-
child dependency. 

LH HL HH Level 
A B A B A B 

1 3.5 0.26 3.7 0.26 2.3 0.15 
2 8.5 0.38 10 0.41 6.5 0.29 
3 24 0.35 30 0.35 13.5 0.6 
4 60 1.9 62 2.4 37 1.1 

 

 
Fig. 3 Variance field estimation in level 1. The solid line 
denotes the horizontal band of level 1, the dotted one for the 
vertical band and the dashed one for the diagonal band. 
B. Gaussian mixture model 

  Like the marginal density of the wavelet 
coefficients in the whole band, the conditional 
densities of  and  also have 
the non-Gaussian property, which shows a 
marked peak at zero and heavy tails. In PAB, as 
in Chipman et al. [4], a GMM is used to fit this 
type of non-Gaussian property. If the variance 

)|( pc xxp )|( cp xxp

σ  for x is known, the following mixture model 
is specified to fit this non-Gaussian property [3], 

    (2) ),0(),0(),0(~ 2
33

2
22

2
11 σσσ NaNaNax ++

where 11 / nσσ = , σσ =2  and σσ 33 n= . 
, ,  and 6 3.02 =a.01 =a 1.03 =a 5.231 == nn

2
332 =+ naa

 
were experimentally determined. They work well 
in [3] and the relation a  
approximately holds. Fig. 2 shows an example 
and its fitted mixture model. 

1/1
2
1 +n

  For a noisy image, the noise-free 
wavelet coefficients are unknown and it is 
impossible to obtain the true variances σ  in the 
model mentioned above. In [3], a substitute σ̂  
for σ  was obtained from the denoised parent 
coefficient for all except the coarsest level or 
from its four noisy children for the coarsest level. 

With mσ  known, the following MMSE 
estimator is used to estimate the noisy 
coefficients 
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III.  Extension to SI wavelet transform 
 The images denoised by the PAB 

approach [3] suffer from some visual artifacts, 
usually in the forms of ringing around the edges 
and speckles in smooth regions, as in other 
traditional wavelet-based denoising approaches. 
Here, we extend the PAB approach [3] to SI 
wavelet denoising in order to reduce the ringing 
and speckle effects. The idea of SI wavelet 
denoising [5] is simple: first, to circularly shift 
the image; second, to denoise all the shifted 
images; last, to align and average over the 
denoised images. This strategy aims to “average 
out” the translation dependency in maximally 
decimated wavelet transform, and was coined as 
cycle-spinning [5]. However, the direct 
implementation of Average [Shift-Denoise-
Unshift] will have computational complexity 

. In fact, cycle-spinning can be 
implemented in an undecimated wavelet 
transform, where the complexity reduces to 

.  

)( 2nO

log(nO
  The PAB approach [3] can be easily 

extended to the undecimated wavelet transform, 
because the undecimated representation is 
consistent with the decimated version. The 
consistency of the undecimated representation 
means that all the coefficients in the decimated 
wavelet transform reappear in the new 
representation. However, the relationship 
between parent and child is a little different in 
the two representations. In the decimated wavelet 
transform, each parent has four children, while 
the wavelet trees in undecimated representation 
overlap---the same coefficients appear in more 
than one tree. This redundancy introduces a 1-1 
parent-child relationship. The change from a 1-4 
parent-child relationship to a 1-1 relationship 
makes only a very small change in the top-down 
procedure to estimate variances. In the traditional 
decimated 1-4 scheme, the variance estimate for 
a node, in all except the coarsest level, is 
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obtained from its denoised parent, and therefore 
the 1-1 scheme can retain the same character. 
However, at the coarsest level, since the node has 
no parent, its variance is estimated from its four 
noisy children in the decimated 1-4 scheme. 
Now, with a 1-1 relationship, only one noisy 
child node is available for each parent at the 
coarsest level. In order to reduce the noise effect, 
the variance for a node p in the coarsest level is 
estimated from the average of the magnitudes of 
five nodes, which consist of its child c and its 
four nearest neighbors (denoted by ▲) in the 
finer level, as in fig. 4. 

b. Compute denoised coefficients from 
(3). 

3. Reconstruct the denoised image by the 
undecimated IDWT. 

IV.  EXPERIMENTAL RESULTS AND 
CONCLUSION 

  As in [3, 10], the Daubechies’ length-8 
wavelet D4 [7] is employed to decompose the 
images into four levels. To evaluate the proposed 
denoising scheme, we compare it with the PAB 
approach [3], and with uHMT [10] and siHMT 
[10]. In table 2, the results of PSNR for 11 
images [10] of size 256×256 are listed. 
Compared with the PAB approach, this SI-
wavelet denoising approach gains an 
improvement of 0.7-0.9 dB, similar to the gains 
in other SI wavelet approach [2, 10]. It also 
outperforms siHMT with a gain of 0.1~0.5 dB.  

 

c

p 
 
 
 
 
   A visual display of the image “bridge” 

can be seen in fig. 5. A noticeable improvement 
of visual quality in the denoised images by SI 
can be easily observed, over those denoised by 
PAB, because both the rings and the speckles are 
greatly eliminated. To compare siPAB and 
siHMT, we particularly focus on the bridge 
image to compare the visual effect because the 
PNSR indexes for two approaches, used to 
denoise this image, are almost same. Note: it is a 
little difficult to compare the visual effects, 
especially in the printed images, because of the 
similarity as reflected in the near identical PSNR 
indexes for two approaches. By taking a detailed 
look at the images, we can see from fig. 6 that 
siPAB performs slightly better than siHMT in 
preserving the straight lines, while the siHMT 
works slightly better than siPAB on the texture. 

 
 
 
 
 
 
 

 
Fig. 4 Five coefficients for the estimation of variance pσ  in 

the coarsest level. 
  We summarize the approach below: 

1. Implement the wavelet transform, without 
downsampling. 

2. From coarsest to finest, compute the 
denoised coefficients 
a. Linearly estimate the variance based on 

its denoised parent (five noisy children 
for the coarsest level) according to table 
1. 

 
Table 2: Comparison of PSNR for different approaches with 2.0/1.0/05.0=nσ  

05/10/20 siPAB si-HMT [10] PAB [3] uHMT [10] 
Baby 33.0/30.0/26.9 33.1/29.6/26.3 32.0/28.8/25.9 32.4/28.9/25.8 

Birthday 30.9/28.1/25.6 29.6/26.4/23.7 30.3/27.4/24.9 28.9/25.8/23.1 
Boats 31.8/28.2/25.0 31.4/27.4/24.1 31.0/27.3/24.1 30.4/26.4/23.3 
Bridge 28.8/25.4/22.7 28.9/25.3/22.7 28.1/24.8/22.0 28.1/24.6/22.0 
Buck 33.6/29.8/26.4 33.7/29.6/25.8 32.8/28.8/25.2 32.5/28.4/24.7 

Building 30.5/27.2/24.0 30.4/26.6/23.5 29.7/26.3/23.0 29.7/25.9/22.8 
Camera 31.0/27.4/24.2 31.1/27.0/23.7 30.2/26.5/23.3 30.3/26.2/23.1 
Clown 31.5/28.0/24.6 31.7/27.8/24.5 30.7/27.0/23.6 30.6/26.8/23.7 
Fruit 33.1/29.8/26.5 33.3/29.7/26.4 32.4/28.8/25.5 32.2/28.5/25.3 
Kgirl 32.4/29.3/26.3 32.6/29.3/26.4 31.8/28.8/25.4 31.6/28.3/25.4 
Lena 31.2/27.7/24.9 31.1/27.6/24.5 30.4/26.9/24.1 30.4/26.7/23.8 

average 31.41/28.05/25.01 31.28/27.61/24.51 30.66/27.22/24.11 30.43/26.76/23.76 
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(

(c) siPAB 

 

 

 
Fig. 5, Image bridge (a), its noised copy (
and their error images. In order to have a
bigger the error magnitude. The SI wave
PAB and by comparing siHMT with HM
especially for the printed images, because
index of 25.36. 

(g) PAB 

                                                             (a)   
Fig. 6, Two different portions of the bridg
siPAB performs a little better in preservi
siHMT works slightly better than siPAB o
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a) Original bridge image
 

(b) Noise level=0.1

(d) Error for siPAB (e) siHMT (f) Error for siHMT 

b) with level of 0.1, its denoised copies by (c) siPAB, (e) siHMT, (g) PAB, and (j) uHMT, 
 visible scene, the error images have been scaled at a same ratio. The darker the pixel, the 
let denoising has an improved visual effect, which can be seen by comparing siPAB with 
T. As siPAB and siHMT are concerned, it is a little difficult to compare the visual effect, 
 the PSNR indexes are almost same, where PSNR for siPAB is 25.42 and siHMT has an 

(i) HMT (h) Error for PAB (j) Error for HMT 

T

                                 
e image and their e
ng the structures, l
n the textured region
  siHM
  siPAB
5

 
                                                  (b) 
rror images for siPAB (the second row) and siHMT (the third row). (a) 
ike the straight lines of the balustrade of the bridge, than siHMT. (b) 
s. 
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