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Abstract

In the field of computer vision, it is common to require
operations on matrices with “missing data”, for example
because of occlusion or tracking failures. In this paper,
we consider a special case, where the large matrix should
be of low rank if it is noise free. This constraint often
exists, such as in the factorization method for the problem
of structure from motion (SFM). In this paper, we propose
a new iterative solution method to the missing-data
problem. It has the following advantage: (i) Fast
convergence. (ii) The recoverability of the unknown
entries can be easily determined. (iii) The initial result,
after the initialization step, is exactly correct and no
iteration step is required if the data available is noise free
and the incomplete matrix is recoverable. We compare
the performance of the proposed method with Jacobs’
method. The iterative algorithm performs much better
than Jacobs’ method when applied to both synthetic data
and real data. Moreover, even after merely the
initialization step, the proposed method usually exhibits a
better performance than Jacobs’ method.

1 Introduction

Several problems in computer vision can be reduced to
fitting a large matrix to its closest low-rank
approximation, such as the factorization method under
affine models [6,7,9,13], and optical flow estimation in
multi-frame video [2,3]. In the non-degenerate cases, the
measurement matrix, consisting of the feature points,
should be exactly of rank 4 [6,7,9,13]. (Although the
registered measurement matrix should be of rank 3
[6,7,9,13].) However, noise is inevitably introduced in the
data: such as that due to the distortion in the imaging
process, or quantization error, or even due to wrong
matching of the feature points. In the presence of noise,
the matrix quickly becomes full-rank. Thus, the matrix
has to be fitted to its low-rank approximation. The
singular value decomposition (SVD) gives the best
solution to this problem [1].

However, SVD works only when all the entries in the
large matrix are available. This requirement is so strong
that it has been regarded [5,10] as the major drawback of
the factorization method, although Tomasi and Kanade
have addressed this in their method [13]. In that
somewhat heuristic approach, a full submatrix is first
decomposed by the factorization method, then the initial
solution grows by one row or by one column at a time.
The final estimate is then refined by employing a steepest
descent minimization method.
Very little other work has been done to address the
missing-data problem, although it is very common, until
Shum et al. [11] and Jacobs [4,5]. Jacobs [4,5] treated
each column, with some entries unknown, as an affine
subspace, and solved the problem by obtaining the
intersection of all the triple affine subspaces (in principle,
in practice a selection is used). The greatest advantage of
Jacobs’ method lies in the fact that it does not need to
start from a complete submatrix. Jacobs [4,5] also
suggested that Shum’s technique [11] could be applied to
the problem of recovering the missing data in SFM,
though, strictly speaking, that paper [11] did not directly
address this problem. Recently, by combining Jacobs’
method [4,5] with the projective factorization method of
Sturm & Triggs [12], Martinec et al. [8] solved the
missing-data problem under the perspective model. Other
geometric constraints [6,10], than the subspace constraint,
were also employed to cope with the missing-data
problem.
In this paper, we propose a new iterative approach to the
problem of low rank approximation in the presence of
missing data. The method starts by the minimization of
the distance of a vector, with some unknown entries, to a
known subspace. Then, from this, we iteratively refine the
unknown entries. In terms of the starting point, our
approach is similar to Tomasi and Kanade’s approach
[13] to the problem because our approach also needs to
start from a complete submatrix. This is potentially a
major drawback, as criticized by Jacobs [4,5]. However, it
always converges to the global minimum when the noise
level is not too strong or when the percentage of the
missing data is not very high. So, the proposed method
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does not strongly depend on the initial submatrix, as will
be proved by many synthetic-data experiments and some
results using real data. For example, for a rank-4 matrix,
the method yields a good result by starting from an 8-by-8
submatrix, which means that only 8 points in 4 frames are
required as a starting point. In the severe cases, where the
proposed method fails due to strong noise and too many
missing entries, Jacobs’ method often produces an
unsatisfactory estimate. Yet, for the proposed method, it
is very easy to determine whether the missing entries can
be recovered. The cases that can not be recovered were
regarded as unstable in Jacobs’ method; however, no
approach was presented in [4,5] to determine whether the
incomplete matrix is stable or unstable. 
Another characteristic of the proposed method is that the
known data is untouched in the first stage recovery
process. So, the recovery step in the proposed method is
completely separated from other steps, like the
factorization in SFM problem. This contrasts with Jacobs’
method, where the matrix is exactly of low rank
immediately after the recovery.
It is worth noting that the result after the initial recovery
step in our method, is exactly correct (and no iteration
step is required) if the data available is noise free and the
incomplete matrix is recoverable.
In section 2, we first state the problem, using an objective
function that is subtly different from the one in Shum’s
method. Then, we propose a new iterative method of
recovering the missing data in a large low-rank matrix. In
section 3, we present the justification of the algorithm.
The discussion includes three parts: the principle behind
recovering the unknown entries so that the distance of the
vector to a known subspace is minimized; assessing the
possibility of recovering the unknown entries; and the
convergence of the iterative algorithm. In section 4, we
compare the algorithm with Jacobs’ method on synthetic
data and real data.

2 The definition of the problem and an
iterative algorithm solving the problem

2.1 Notation

In the following, a matrix will be denoted by a bold
capital letter, like M , and a bold lowercase letter
represents a vector, e.g. x . A scalar entry in a vector or in
a matrix will respectively be denoted by, for example, 1x
or 2,1M . nI  denotes the nn×  identity matrix. A matrix

U , nmR ,∈U , is said to be orthonormal, iff n
T IUU = .

The set of nm×  orthonormal matrices is denoted by
nmO , . An orthonormal matrix will always be denoted by

U  or V . The Frobenius norm of a matrix M (or a

vector) will be denoted as 
F

M , where

∑=
ji

jiF
M

,

2
,M . )(Mspan  denotes the subspace

spanned by the columns of M . The distance of a vector
m , mR∈m , to the subspace )(Mspan , nmR ,∈M , is
denoted as ))(,( Mm spand  and it is sometimes described
as the distance of a vector m  to a matrix M , denoted as

),( Mmd . If the matrix, U , is orthonormal,

F
Td mUUmUm −=),( . Similarly, we can define the

distance of a matrix N  to another matrix M . The
distance of a matrix nmR ,∈M  to an orthonormal matrix

rmO ,∈U  is 
F

Td MUUMUM −=),( . The hat symbol,

“^”, denotes an estimate of the quantity beneath the
symbol. rM  denotes the closest rank-r approximation of
M , which can be obtained by SVD [1]: Tr VUM Σ= ,
where rmO ×∈U , rrR ×∈Σ  and rnO ×∈V . 

2.2 The problem

A large matrix nmR ,∈M , which should have a low rank
r , is corrupted with some noise, usually assumed to be
i.i.d. Gaussian, and has some unknown entries. The
problem is to recover these missing entries and to make
the recovered matrix as close as possible to one rank-r
matrix. Analytically, the objective is to minimize the
distance between the recovered matrix, Μ̂ , and its closest
rank-r approximation, rM̂ :

 )ˆ,ˆ(min rd MM                             (1)

subject to jiji MM ,,
ˆ =   if jiM ,  is observed. 

Note: The minimization objective in the problem above is
a little different from that in Shum’s approach, where the
objective is to minimize the sum of the square of the
difference between known elements in the incomplete
matrix and the corresponding elements in the new matrix,
which is exactly of low-rank. 

2.3 Non-linearity of the problem

Here, by examining the singular values of the matrix, we
provide a brief discussion concerning the intrinsic non-
linearity of the problem above.  Suppose nmR ,∈M . Its
closest rank-r matrix, measured by the Frobenius norm, is

∑
=

==
r

i

T
iii

Trrrr

1
)( vuVΣUM σ , and the distance is

∑
+=

=−
p

ri
iF

r

1

2σMM  [1], where ),min( nmp =  and }{ 2
iσ

are the non-descending eigenvalues of MMT . 
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Suppose M  has some unknown entries }),(|{ , Ξ∈jiM ji ,
where }1,1 unknown, is  |),{( , njmiMji ji ≤≤≤≤=Ξ .

nm
ji R ,

, ∈E , all of whose entries are zeros, except

1, =jiE . Let the recovered matrix be M̂ ,

∑
Ξ∈

+=
),(

,,
ˆ

ji
jijik EMM , where 

Ξ∈
Ξ∉





=
),(
),(

0
,

, ji
jiM

M ji
ji . The

characteristic polynomial of MM ˆˆ T , )(λp , is a high-
order polynomial of λ  and jik , . The equation, 0)( =λp ,

has n non-negative roots for any }{ , jik , because MM ˆˆ T  is
positive semi-definite. The problem reduces to finding

}ˆ{ , jik , which minimizes the sum of the least rn −  roots
of the equation, 0)( =λp . This is a nonlinear problem.
Specifically, we consider a simple case, where the matrix
is 10,10R∈M  and has an unknown entry 1,1M . Suppose
M  should be of rank-4, if it were noise free and had no
unknown entries. With an unknown entry, its
characteristic polynomial, ),( tp λ , where t  denotes the
unknown entry, is of the form:

∑
=

+=+++=
9

0

10
01

2
2

10 )()()()(),(
i

i
i tgftftftp λλλλλλλ

where ∑
=

=

=
9

0
,)(

j

j

j
jii ff λλ  and ∑

=

=

=
2

0
,)(

j

j

j
jii tgtg , and jif ,

and jig ,  are determined by M . This equation is
nonlinear and the problem of minimizing the sum of the
least 6 roots becomes very complicated. If there are many
unknown entries in the matrix, the problem becomes
intractable from this point of view.

2.4 An iterative algorithm for the problem
  
Because the problem, in section 2.2, is intrinsically
nonlinear, no analytical solution exists. In this subsection,
we present an iterative algorithm to the problem above.
We defer the justification of this algorithm until section 3.
Algorithm 1
(i) Searching for a complete submatrix: Suppose,
without loss of generality, the matrix M , after some row
exchanges and column exchanges, has a block

representation as: 







DC
BA

, where all entries in A  are

known, and some entries in B , C , and D  are unknown.
(ii) Initialization: (a). First consider the submatrix

][ BA . Recover B̂  from A  by theorem 1 or theorem 2,

and obtain 












21

21
ˆ

DDC
BBA , where the unknown entries in

1B̂  have been recovered and the unknown entries in 2B
can not been recovered. Note: this induces a split of
submatrix D. (b). Similarly, recover ][ 1DC  from

]ˆ[ 1BA , and obtain 
















22212

12111

21
ˆˆ
ˆ

DDC
DDC
BBA

.

After sub-step (a), check whether all the unknown entries
have been recovered. If so, terminate the initialization
step and go to the iteration step; if not, go to sub-step (b).
After sub-step (b), check for completion again. If all the
entries have been recovered, go to the iteration step. If
not, check the following condition: Is the number of the
non-recovered entries before sub-step (a) same as that
number after sub-step (b)? If so, the unknown entries in
B , C , and D  cannot be recovered. If the number of
non-recovered entries decreases, continue the
initialization step (a) by regarding the recovered entries as
known. 
After this initialization procedure, we obtain a recovered
matrix 1M̂ , and set ∞=0d .

(iii) Iteration: From iM̂ , obtain its closest rank-r

approximation by SVD: T
iii

r
i VΣUM =ˆ . Compute the

error 
Fi

r
iid MM ˆˆ −= . If

ε<−− ii dd 1                                    (2)
terminate the iteration; else, from iU , recover the missing
entries in B , C , and D  by theorem 1 or theorem 2, and

obtain 1
ˆ

+iB , 1
ˆ

+iC  and 1
ˆ

+iD . Set 











=

++

+
+

11

1
1 ˆˆ

ˆˆ
ii

i
i DC

BAM .

3 Justification of the algorithm

In this section, we motivate and prove the convergence of
the algorithm above. First, we propose how to recover the
missing components of a vector so that it has the shortest
distance to a known subspace. Then, a feasible criterion
about the recoverability of the missing entries is
presented. Finally, the convergence of the algorithm is
proved.

3.1 Minimization of the distance of a vector
with missing entries to a known subspace

Here, we first consider a simple case, where the subspace
is assumed known. Let rmO ,∈U . A vector mR∈x  has
one missing component, and without loss of generality,
we suppose 1x  is unknown. The following theorem
provides an approach to recover the unknown component

1x̂ , which minimizes the distance ),( Uxd .
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Theorem 1: If )(Ue1 span∈ , ),(),( UxUx dCd =≡ ,

where T
mxxx ],,,,0[ 32 L=x , with all entries, except the

first entry, same as those in x . If )(Ue1 span∉ ,

)1/(ˆ 1,111 −= Prx  minimizes ),( Uxd , where TUUP =  and
xPxr −= .

Proof (i) If )(Ue1 span∈ , construct rmO ,],[ ∈′= UeU 1

by Schmidt orthogonalization of the columns of U . Note
)()( UU spanspan = .

Cdddd ≡′=′><−== ),(),,(),(),( 11 UxUeexxUxUx .
(ii) Suppose )(Ue1 span∉ . Construct an enlarged matrix

],[ˆ
1eUS = . From the proof above, Cd ≡)ˆ,( Sx . So, for

the second part, we only need to prove that
)ˆ,()ˆ,ˆ(),ˆ( UxUxUx ddd ≡=  if )1/(ˆ 1,111 −= Prx , and

)ˆ,(),( UxUx dd ≥ . The latter is trivial (because UU ˆ⊂ ).
Apply Schmidt orthogonalization on the enlarged matrix
Ŝ  and obtain its orthonormal representation U~ ,

1,],[~ +∈= rmOuUU , where
l

F
/)(/)( 111111 PeePeePeeu −=−−= , i.e. u  is the

unit vector in the direction of the orthogonal component
of 1e  to the subspace U .

Note: 1111
2

11
2 1)()( Pl m

T
m

T
F

−=−−=−= ePIPIePee

T
mm

T
m

x

x

]0,,0,0,ˆ)[()(

)]0,,0,0,ˆ[)((ˆˆ

1

1

L

L

PIxPI

xPIxPx

−+−=

+−=−
       (3)

Similarly, define the projection matrix P~  upon U~ , i.e.,
TUUP ~~~

= .

2
1

2
11

2
11

/]0,,0,0,)[()(

/)()(

/)()()(

)(~

lr

l

l

T
mm

T
mm

m
T

mm

T

LPIxPI

reePIxPI

xPIeePIxPI

xuuxPxxPx

−−−=

−−−=

−−−−=

+−=−

   
)6(
)5(
)4(

 

(4) comes from the definition of P~ , (5) from the
definition of u , and (6) from the definition of r .
From (3) and (6), if )1/(ˆ 1,111 −= Prx , then

xPxxPx ~ˆˆ −=−  and )ˆ,(),ˆ( UxUx dd = .                    QED
Note: In theory, if )(Ue1 span∈ , 1x̂  can be any value.
However, it is not useful to assign an arbitrary value to 1x
in practice.  So, not surprisingly, we regard 1x  as
unrecoverable in this case.
Theorem 2 gives the explicit solution to a more general
problem, where several entries are missing. Without loss
of generality, assume the first k entries },,1|{ kixi L=
are unknown.

Theorem 2: If φ== )(},,1|{ Ue spankispan i IL ,
T

kkkk
T

k rrxx ],,[)(]ˆ,,ˆ[ 1
1

:1,:11 LL −−= IP  minimizes
),( Uxd , where P  is defined as in theorem 1,

T
mkk xxx ],,,,0,0[ 21 LL ++=x  and xPxr −= .

In theorem 2, if φ== )(},,1|{ Ue spankispan i IL , the
unknown entries can not be recovered, as will be clear
later in the discussion of the recoverability. The proof for
theorem 2 is similar to theorem 1, except that the proof is
much more complicated because of the introduction of a
vector of unknown entries. The general idea is that we
firstly prove the distances from all possible vectors to the
subspace are less than or equal to a constant. Then, as
done in theorem 1, we construct the vector, whose
distance to the subspace is equal to that constant.

3.2 Recoverability of the unknown entries

Obviously, the recovery of the unknown entries depends
on the existence of 1

:1,:1 )( −− kkk IP , from the proof above.
Another criterion for the recoverability, as stated in the
theorems, is φ== )(},,1|{ Ue spankispan i IL . Are
there any relationships between them? How many
unknown entries can be recovered at most? Theorem 3
gives a positive answer to the first question and theorem 4
provides a quantitative answer to the second.
Theorem 3: φ== )(},,1|{ Ue spankispan i IL  is

equivalent to 0)det( :1,:1 ≠− kkk IP , i.e. 1
:1,:1 )( −− kkk IP

exists.
Proof: Because U  is a rank-r orthonormal matrix, there
exists another (always many) rank- rm−  orthonormal
matrix U′ : which makes mmO ,],[ ∈′UU . We block the

orthonormal matrix as: 



=′

43

21],[ SS
SSUU , where

kkR ,
1 ∈S , kmkT R −∈ ,

32  and SS , and kmkmR −−∈ ,
4S . Then

T
kk 11:1,:1 SSP = , k

TT ISSSS =+ 2211 , and
T

kkk 22:1,:1 SSIP −=− . Similarly, T
m UUIP ′′−=− . So,

)(

)(

)(

)(
)(,

0)det(

:1,:1

:1,:1

:1,:1

U
0

q

0
0

q
IP

0
0

q
IP

0
q

0qIPq
0qIPq

IP

span

Rzeronon

km

km
m

km
m

T

km

kkk
T

kkk
k

kkk

∈







⇔

=







−⇔

=







−








⇔

=−⇔
=−∈−∃⇔

=−

−

−

−−

QED
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Theorem 4: rm−  unknown entries can be recovered at
most.
Proof First, we prove that mIP −  has a rank of rm− .

T
m UUIP ′′−=− , where U′  is defined in the proof of

theorem 3. From the fact that U′  is of rank rm− ,
mIP −  has a rank of rm− . kkk IP −:1,:1 , which is a

submatrix of mIP − ,   can have a rm−  rank at most. So,
rm−  unknown entries can be recovered at most.     QED

Note: The recoverability is obviously contingent on the
number of the unknown entries. From theorem 4, if there
are more than rm−  unknown entries, they are definitely
beyond recovery. If not, from theorem 3, the
recoverability can be determined in the recovering
process, where the inverse of kkk IP −:1,:1  is needed. In
practice, kkk IP −:1,:1  always has a rank of k , if rmk −≤ ,
either in real-life data or in synthetic data, generated by
computer. So, the missing data can always be recovered if
the unknown number is less than or equal to rm− .
However, the recovery is very sensitive to the noise if the
unknown number equals to or is slightly less than rm− .

3.3 The convergence of the iterative algorithm

In this section, we prove the convergence of the
algorithm, in section 2.2, in the simplest case, where only
one column has some unknown elements. Without loss of
generality, we suppose ],[ mMM = , where m is the last
column of M  and has some unknown elements. The
algorithm goes in this way.
Algorithm 2: 
Initialization: Obtain the closest rank-r approximation, of
M , by SVD: 000 VΣUM =r . From 0U , obtain the

estimate, 1m̂ , of m, by theorem 2. Set ]ˆ,[ˆ
11 mMM = ,

and ∞=0d .

Iteration: From iM̂ , obtain its closest rank-r

approximation by SVD: iii
r
i VΣUM =ˆ . Compute the

distance Fi
r
iid ||ˆˆ|| MM −= . If ε<−− ii dd 1 , terminate

the iteration; else, from iU , recover m by theorem 2, and

obtain 1ˆ +im . Set ]ˆ,[ˆ
11 ++ = ii mMM  and go to the iteration

loop.
Theorem 5: The iterative algorithm above converges to a
local minimum.
Proof

),ˆ(
),ˆ(

),ˆ(),(
),ˆ(),(),ˆ(

11
2

1
2

1
22

222

++

+

+

≥
=

+≥
+=

ii

ii

iii

iiiii

d
d

dd
ddd

UM
UM

UmUM
UmUMUM

             
)10(
)9(
)8(
)7(

(7, 9) come from the definition of d, (8) from theorem 2,
and (10) from the SVD theorem.                                QED
The proof of the convergence for algorithm 1, in section
2.2, is almost same as the proof above.
Note: on an alternative for the convergence condition
Another condition for the convergence, not so rigorous as
(2) in the algorithm, is to check the variation of the
unknown entries, i.e.

ε ′<−+ Fii ||ˆˆ|| 1 MM                          (11)
Condition (11) is easier to check. However, it may
sometimes happen that condition (11) fails to indicate
convergence. We defer the explanation of the
discrepancy between (2) and (11) until section 4.2.
Note: global vs local minimums
In practice, in the problem of fitting a large matrix to its
low-rank approximation, the known entries should
provide enough information to recover the unknown ones.
So, an approximate subspace can be obtained from the
known entries and the initial recoveries (i.e. after the first
stage of our algorithm) should be close to the optimal
solution, as will be demonstrated in the experiments.
Under this assumption, the iteration would almost
certainly converge to the optimal solution, as observed in
the experiments. 

4 Experiments

In this section, we have two objectives: first, to better
clarify the conditions for convergence and the global vs.
local minimum behaviour. Our second objective is to
evaluate the performance of the proposed approach in
comparison with other approaches, especially with
Jacobs’. We present 3 groups of experiments, two using
synthetic data and one from the “box frames” sequence,
which was also used by Jacobs [4,5]. 

4.1 Evaluation of the algorithm

Here, when evaluating the algorithm, we utilize a
different index from that in Jacobs’ approach [4,5]. When
employing synthetic data, we evaluate the performance by
the error between the rank-r closest approximation, rM̂ ,
of the recovered matrix and the noise-free matrix M~ :

F
r ||~ˆ|| MM − . For real data, only a variant of this index

can be used. Because noise-free data is not available, we
use the error, F

rr ||ˆ|| MM − , as the index for comparing

the performance: rM  is the closest rank-r approximation
of the real matrix M .

4.2 Only one unknown entry

Consider a matrix 1010~ ×∈RM , whose rank is 3. M~  is
corrupted with Gaussian noise (zero mean and unit
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variance)  producing M , which is observed. Specifically,
in Matlab notation, 5)10,3()3,10(~

××= randnrandnM

and )10,10(~ randn+= MM . Suppose a single element,

10,1M , is unknown.
In this experiment, in order to evaluate the algorithm, we
also search the neighborhood of the candidate solution, by
perturbing the estimated value, 10,1M̂ . We compute the

distances of 200 perturbed matrices, M
)

, respectively to
their rank-3 approximations, 3M

)
, where 10,1M

)
 takes one

of 200 values centred around 10,1M̂ , i.e.,

10,110,1 M̂istepM i +×=
)

 for 100:1,1:100 −−=i . When
the step is small (e.g., 0.1), we search a small area; while
a large step (e.g., 3) is used to search a large area. Fig. 1
shows two of these experiments, one of which is denoted
by the solid curves and the other by the dotted curves.
Two curves in the lower part are from the experiment
using a smaller step and the other two curves from the
larger step. The horizontal axes are the step numbers in
the above recipe for generating the perturbations: the
point 0 is the solution obtained by the iterative algorithm.
Note: thus the scales of the upper and lower graphs are
different – the lower curves are in fact an expanded part
of the upper curves. From the smaller steps, the solution
appears to be a local minimum. From the larger step, we
may see other local minimums or maximums.
Thus we can see examples of the iteration behaviour:
suppose, for example, that the initial value of 10,1M  in the
matrix corresponding to the solid-curve example is
assigned the value 803ˆ

10,1 ×+M , which is shown as the
star, “*”, on the solid curve. Starting from here, the
algorithm can’t find the correct solution. Even worse,
when the convergence condition is criterion (11), the
iterations will proceed to the infinite if there is no other
local minimum in the right part, i.e., if the convergence
condition is ε ′<−+ Fii ||ˆˆ|| 1 MM , defined in (11), the
algorithm will not converge. However, the iteration will
stop under the condition of ε<−− ii dd 1  - in effect, due
to the extremely gentle slope of the curve, large changes
in abscissa (related to (11)) produce only small changes in
the ordinate (related to (2)). Those cases, non-convergent
measured by (11), are described non-convergent in
sections 4.3 and 4.4.
We have run the experiments 1000 times, and in all of
them we found good solutions, which can be regarded as
the global minimum. First, the recovered data is closer to
the noise-free data than the noise-corrupted one.
Secondly, the distance of the noise-corrupted matrix to its
rank-3 approximation is almost same as the solution by
the algorithm. Thirdly, compared with the other 200
perturbed matrices selected in a large or small area around

the solution produced by our method, that solution is the
best one, as shown in fig. 1. It has to been admitted that
such sampling strategy can never totally rule out the
existence of other better solutions within the sampling
area. However, the optimal solution, if it is not the one
obtained by our approach, must lie beyond the large
searched area because of the smoothness of the objective
function (as observed in fig. 1) and it is not meaningful in
practice. From the experiments in section 4.3, we can also
draw such an experimental conclusion: the solution can be
regarded as the optimal estimate, because F

r ||~ˆ|| MM −  is

very close to F
r ||~|| MM − , which means that the

recovered matrix almost has same error as the whole
noised matrix.

Fig. 1: Two 10-by-10 examples with one unknown entry

4.3 Synthetic data in a 4040× matrix

In this subsection, we report the results of experiments on
synthetic matrices with a rank of 3, which are then
corrupted with Gaussian noise. Specifically,

5)40,3()3,40(~
××= randnrandnM  and

)40,40(1.0~ randn×+= MM . Because the proposed
algorithm has to start from a complete sub-matrix, we
suppose that the first 66×  sub-matrix is always known
and the unknown entries randomly distribute in the other
part of the matrix. By comparing with Jacobs’ method, we
study, in the following, the performance of the proposed
method at two stages: after the initialization step and after
the iteration loop. Note: the error between 3M  and M~ ,

F||~|| 3 MM − , is approximately 1.5.
(i) When the percentage of unknown entries is 10%, the
proposed algorithm converges in all the 100 experiments.
The performance of the iterative algorithm is very stable,
indeed the error, F||~ˆ|| 3 MM − , is always around 1.6;
which is much smaller than the error for Jacobs’ method,
as shown in fig. 2. In all these 100 experiments, the
initialization step of our approach also performs better
than Jacobs’ method.
(ii) When the percentage of the unknown entries goes up
at 30%, all the cases still converge and its performance,
always around 1.9, is still much better than Jacobs’
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method, as shown in fig. 3. In 76 out of the 100 cases, the
initial estimation’s performance is also better than
Jacobs’.
(iii) When the percentage of the unknown entries goes up
at 50%, 98 cases in all the experiments still converge and

its performance, always around 2.4, is still much better
than Jacobs’ method, as shown in fig. 4. In the other two
non-converged cases, Jacobs’ method has errors of
17.9627 and 22.7680. In 68 out of the 98 cases, the initial
estimation’s performance is better than Jacobs’.
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Fig. 2-7: 40-by-40 matrix with 10% (fig.2), 30% (fig.3), and 50% (fig.4) of entries unknown, and box-frame with 10% (fig.5), 30%
(fig.6), and 50% (fig.7) of entries unknown. In these figures, the horizontal axis is the index of the error by Jacobs’ method and the
vertical axis denotes the index for the initialization step and the iterative method. Symbol, “+”, denotes the iterative method and “o”
for the initialization step. So, a point, lying in the right to the x-y=0 line, means that Jacobs’ method performs worse than the iterative
method or the initialization step, vice versa.

4.4 Real-data experiment

Here, to test the algorithm on real data, we use the box
video, which was used in [4,5]. The sequence consists of
40 feature points across 8 frames. One frame is shown in
fig. 8. As in section 4.3, we suppose that 8 points in 4
frames are available. This 8×8 submatrix is randomly
selected. We then randomly occlude the other feature
points. In this experiment, we particularly note how often
the recovery error, F||ˆ|| 44 MM − , is within a bound, like
20 or 50, because we find that the reconstruction error by
the factorization method is probably unendurable when

50||ˆ|| 44 >− FMM , and the factorization method

sometimes performs very bad even if 20||ˆ|| 44 >− FMM ,
in the box sequence. In addition, we do not, in this
experiment, take into consideration the special nature of
the problem of the factorization method in SFM: where
“one of the vectors spanning its row space is known to be
1, a vector of all ones” [5]. This task can be separately
solved by the metric transformation [9,13] after

recovering the missing data. Here, we take the recovery of
the unknown entries as a general problem, stated in
section 2.2, except that a point’s x  and y  coordinates
appear or disappear simultaneously.
(i) When the unknown entry level is about 10%, the
performance measure from the iterative algorithm is
around 1.1. The result is also good from the initialization
step (alone) in all the cases. On 99 cases, Jacobs’ method
does not perform as well as the initialization step.
(ii) As the unknown entry level grows to 30%, 3 cases out
of the 100 experiments can not be initialized because one
or more columns (rows) have more than 12 (36) unknown
entries. In another 2 cases, the iterative method does not
converge, and the indexes for Jacobs’ method are 10.0
and 8.4. In the remaining 94 cases, the performance
measure is less than 4, for the iterative algorithm, and the
mean is around 2.3. On 1 case, the error is about 5.6. In
those cases that can be initialized, the errors in 4 cases are
more than 50 for the initialization step, compared with 3
cases for Jacobs’ method. On the whole, the initialization
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step performs better than Jacobs’ method, as can be seen
in Fig. 6.
(iii) When the unknown entry level grows up to 50%, 70
cases can not be initialized because of too may unknown
entries in some rows (or some columns). In the other 30
cases, the iterative algorithm converges in 26 of them.
Even if one takes Jacobs’ result as the starting point, only
13 cases in all the 100 cases converge. In these 13 cases,
algorithm 1 converges in 11 cases and fails in another 2
cases. While, there are other 15 cases where algorithm 1
converges and the iterative algorithm, taking Jacobs’
result as the starting point, does not converge. We only
list the 26 convergent cases in fig. 7, where Jacobs’
method has more-than-50 error on 17 cases, shown near
the right part. On the other 4 non-convergent cases, the
indexes for Jacobs’ method are 196.2, 33.6, 8258.8 and
16.2.

Fig. 8: One frame of the box sequence.
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Fig. 9: The 5th frame in box video with 16 points occluded,
where the unknown percentage in the whole sequence is 30%.

We give an example with about 30% of the unknown
entries for the box video, in fig. 9, to see how well the
algorithm recovers the missing data. Fig. 9 shows only

one frame, the 5th frame, where are 24 points present in
the video and other 16 points are artificially occluded.
The 24 points, present in the video, are denoted by “*”,
and true positions of the occluded points are denoted by
“+”. The recovered positions by the iterative method are
denoted by “□”, and “∆” for the initialization result. Three
types of positions, for the occluded points, overlap in fig.
9, so that we even hardly see the difference between them.

5 Conclusion

The main contributions of this paper are to propose an
iterative algorithm to the problem about missing data in a
large low-rank matrix and to prove its convergence. The
experiments show its effectiveness. Although the method
has the disadvantage of theoretically finding a local
minimum, the outcome can be regarded as global optimal
solution if the noise level is not very strong or the
percentage of missing entries is not very high; as verified
by experiments with synthetic data and with real data.
Another potential drawback of the approach, that having
to start from a complete submatrix, will not present much
difficulty in general. 
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