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Abstract: Appearance-based approaches in face recognition, specifically the Eigenface 
approach, were one of first successful demonstrations of machine recognition of faces 
[1]. These methods, such as those proposed in [2, 3], proved to be effective in 
experiments with large databases. Further development of holistic methods of face 
recognition and their theoretical background, such as those proposed in [4-9], were 
focused towards recognizing faces from images with changes caused by illumination 
effects and pose variations. Although much effort has been made towards this goal, 
current algorithms are still far away from the capability of the human perception system 
[1]. This report shall give a detailed description of the fundamentals of appearance-
based holistic methods for face recognition, specifically the Eigenface approach [3], as 
well as  our experimental results on the Yale Face Database.  
 
Index terms: Face recognition, Appearance-based holistic methods, Eigenface Approach 
Illumination effects. 
 
 
 
1. Introduction 
 

Automatic visual recognition of human faces is an extremely attractive research 
subject. This is motivated by the wide range of commercial and law enforcement 
applications, as well as the desire to understand the psychophysical nature of the 
capabilities of face recognition in human beings. The task seems very easy and natural 
for biological systems, whereas current state-of-the-art face-recognition algorithms, 
although having reached a certain stage of maturity, is still limited to environments with 
strict constraints imposed. Noticeably, recognition of face images acquired in a setting 
with illumination changes, or pose variation of the subject, still remains a largely 
unsolved problem [1]. 
 

After three decades of research effort, the Eigenface approach [3] emerged as the 
first real successful demonstration of automation human face recognition. This is one of 
the methods which can be classified as appearance-based methods, which uses the whole 
face region as the raw input to a recognition system. The goal of an appearance-based 
face recognition algorithm is essentially to create low-dimensional representations of face 
images to perform recognition. In contrast, geometric feature-based methods attempt to 
distinguish between faces by comparing properties and relations between facial features, 
such as eyes, mouth, nose and chin. As a consequence, success of these methods depends 
heavily on the feature extraction and measurement process.  
                                                 
* Tat-Jun Chin was a holder of the Australia-Asia Awards conferred by the Department of Education, 
Science and Training (DEST) of the Government of Australia since Feb 2004. 
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The low-dimensional representation of faces in the Eigenface approach is derived 
by applying Principle Component Analysis (PCA) to a representative dataset of images of 
faces. The system functions by projecting face images onto a feature space that spans the 
significant variations among known face images. These significant features are termed 
“Eigenfaces” because they are the principal components of the set of training face images 
[3]. It should be noted that these features do not necessarily correspond to facial features 
such as eyes, nose and ears. They merely capture the image points that cause meaningful 
variations between the faces in the database that allow them to be differentiated. Face 
images are then classified within the low-dimensional model using a nearest-neighbor 
classifier. 
 

The Eigenface approach works well on test images unaffected by illumination 
changes. It is a well-know fact that intrapersonal differences (e.g. illumination effects, 
poses) cause more variations between face images than interpersonal differences 
(identity) [10]. To handle this variability, methods usually take one of two approaches: 
measure some property in the image that is invariant or at least insensitive to illumination 
effects, or model the object in order to predict the variations caused by changes in 
illumination [5]. Solutions that follow the former approach are so far still elusive, and 
may never exist at all [11]. This suggests that appearance-based methods, which derive 
low-dimensional models of the face images used for training, are the only answer to this 
challenging problem. 
 

The Eigenface approach (or other appearance-based methods) can be extended to 
include test images which are affected by illumination variations, provided that the faces 
have been recorded under similar illumination conditions. Acquiring face images to 
create databases that include all possible illumination conditions is unwieldy and 
impossible, as the space that corresponds to lighting conditions is infinite dimensional. 
This is a drawback of appearance-based models where, in their original form, they cannot 
be extrapolated to include novel viewing conditions [9]. 

 
 Theoretical work along the lines of [4, 6, 12, 13] argued that the set images of 
objects under all possible illumination can be modeled by a low-dimensional subspace. 
Their conclusion was made under the assumption that the surfaces of the objects have 
Lambertian reflectance functions. Empirical results in [6, 13] showed that “only a small 
number of eigenimages are needed to approximately represent the intensity changes 
caused by variations in the lighting conditions”. Furthermore, it was suggested that for a 
wide range of objects, at most 7 eigenimages suffice to capture the effects of lighting 
variations on images. Elaborate theoretical analyses published in [4, 12] proved that the 
set of all Lambertian reflectance functions obtained with arbitrary light sources lies close 
to a 9D linear subspace.  
 
 What remains now is a means to obtain a set of images of the same face but 
subjected to all possible illumination conditions: the Eigenface approach (or other 
appearance-based methods) is readily extendable to include face images with different 
illumination conditions to create a low-dimensional representations that models lighting 
changes as well, and the low-dimensional representation has been proven empirically and 
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theoretically to be at most 9-dimensional. A distant variant of the Eigenface approach, the 
Illumination Subspace Method [5, 8, 9] proved to be effective in filling in this gap. With 
fundamentals rooted in photometric stereo methods, especially those along the lines of 
[14], this method estimates an “illumination cone” that contains “all possible images of a 
convex Lambertian surface created by varying the direction and strength of an arbitrary 
number of point light sources at infinity”. The illumination cone is a generative model 
that uses a small number of training images to synthesize novel images under changes in 
lighting. The cone is then sampled and used to create a low-dimensional representation of 
a face image under all possible illumination conditions. 
 

Section 2 provides an introduction of the Eigenface approach. Section 3 gives a 
detailed mathematical description of the training procedures involved in the Eigenface 
approach. Section 4 presents an illustration on how the Eigenface approach is used to 
classify a human face. Our experimental results on the Yale Face Database are inserted 
according to relevance in the previous sections. We present our conclusion in Section 5.   
 
 
 
2. The Eigenface Approach 
 

Proposed in 1991 by Turk and Pentland, this was the first genuinely successful 
system for automatic recognition of human faces. It was a breakaway from contemporary 
research trend on face recognition which focused on detecting individual features such as 
eyes, nose, mouth, and head outline, and defining a face model based on position and size 
of these features, as well as geometrical relationship between them. Despite being 
economical representations of a face, these methods are quite sensitive to the feature 
extraction and measurement process [9]. Lack of existing techniques for effective 
extraction and measurement of facial features presents a drawback for such methods [15]. 

 
It was argued in [3] that previous work has ignored the issue of “just what aspects 

of the face stimulus are important for identification”. It suggested an information theory 
approach that decomposes face images into a small set of characteristic feature images 
called “Eigenfaces”, which are nothing more but principle components of the set of 
training images. These components span a subspace within the image space where each 
different face in the training set has a unique position. The Eigenfaces emphasize 
significant discriminatory “features” that causes large variations between the faces used 
for training, which subsequently allows them to be differentiated. It should be noted that 
these features may not necessarily correspond to facial features mentioned earlier. 
Recognition is then performed by projecting the test image into the subspace spanned by 
the Eigenfaces and classified based on the distance of the projection from positions of 
known faces. 

 
Turk and Pentland were motivated by a technique developed by Sirovich and 

Kirby first published in [2, 16]. Based on the Karhunen-Loève expansion (which goes by 
other names such as Hotelling Transform or Principle Component Analysis), Kirby and 
Sirovich demonstrated that “any particular face can be economically represented in terms 
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of a best coordinate system” and the system was termed “eigenpictures”. Eigenpictures 
are eigenfunctions of the averaged covariance of the ensemble of faces. In other words, 
they showed that in principle, a collection of face images can be approximately 
represented by a small set of standard pictures (the eigenpictures) with a small set of 
weights for each of the standard pictures. 

 
2.1 Procedures of the Eigenface Approach to Face Recognition 
 
 As proposed by Turk and Pentland, the system was initialized or trained with the 
following operations: 
 

1. An initial set of face images were acquired. This was the training set. 
2. The Eigenfaces were calculated from the training set. Only M Eigenfaces 

corresponding to the M largest eigenvalues were retained. These Eigenfaces 
spanned the face space which constituted of the training set. 

3. The M Eigenface-weights were calculated for each training image by 
projecting the image onto face space spanned by the Eigenfaces. Each face 
image then will be represented by M weights- an extremely compact 
representation. 

 
After initialization, the following steps were performed to recognize test images: 
 
4. The set of M weights corresponding to the test image were found by 

projecting the test image onto each of the Eigenfaces. 
5. The test image was determined if it was a face at all by checking whether it 

was sufficiently close to the face space. This was done by comparing the 
distance between the test image and the face space to an arbitrary distance 
threshold. 

6. If it was sufficiently close to the face space, compute the distance of the M 
weights of the test image to the M weights of each face image in the training 
set. A second arbitrary threshold was put in place to check whether the test 
image corresponded at all to any known identity in the training set. 

7. If the second threshold was overcome, the test image was assigned with the 
identity of the face image with which it had the smallest distance. 

8. (Optional) For a test image with a previously unknown identity, the system 
was retrained by adding this image to the training set. 

 
 
 
3. The Training Procedure of Eigenface Approach 
 
 A face image, I(x,y), is a two-dimensional N by N matrix of intensity values, 
which are usually quantized to 8-bit values. Each x and y pair denotes a position in the 
image. For the purpose of exposition, it is convenient to represent the matrix of intensity 
values as a vector, where each row is concatenated. Now, instead of having a matrix of 
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dimension N by N, we have a vector of dimension N2. As an example, a typical image 
with size 220 by 220 pixels becomes a point in a 48400-dimensional space. 
 
 To obtain the Eigenfaces for a training set, it is crucial to first determine the mean 
vector, deviation-from-mean vectors and the covariance matrix for the particular training 
set. Let the images in the training set be represented by {T1, T2, T3, … , TM}, where each 
Tn is a vector of N2-dimension. The value M is the number of images in the training set. 
With this representation, the mean vector is: 
 

 ∑
=

=Ψ
M

n
nT

M 1

1  (1) 

 
The set of deviation-from-mean vectors, { 1Φ , 2Φ , 3Φ , …, MΦ } contains the individual 
difference of each training image from the mean vector. Kirby and Sirovich [16] refer to 
these vectors as caricatures. They are simply defined as: 
 
 Ψ−=Φ ii T  (2) 
 
As a concrete illustration, the training set in (Figure 1), which is a subset of the Yale Face 
Database, yields the average face in (Figure 2). The caricatures corresponding to the 
training set is displayed in (Figure 3). 
 
 As described previously, the Eigenfaces are the set of principal components of the 
training set. To obtain the eigenface description of the training set, the training images are 
subjected to Principal Component Analysis (PCA), which seeks a set of vectors (the 
principal components) which significantly describes the variations of the data. 
Mathematically, the principal components of the training set are the eigenvectors of the 
covariance matrix of the training set [17]. The covariance matrix is given by: 
 

 ∑
=

ΦΦ=
M

n

T
nnM

C
1

1  (3) 

 
It is from this matrix that we are interested in finding the set of vectors uk and scalars λk 
that satisfy the relations 
 
 kkk uCu λ=  (4) 
 

  (5) 
kl
kl

if
if

uu k
T
l ≠

=





=
,0
,1

 
It is clear from (5) that the vectors uk are orthonormal. Another way of representing the 
covariance matrix is by writing 
 
 [ ]MA ΦΦΦ= ...21  (6) 
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 TAA
M

C 1
=  (7) 

 
A closer look at (7) reveals that matrix C has a dimension of N2 by N2, and determining 
N2 eigenvectors and eigenvalues from a matrix this large (48400 by 48400 for our 
example) is unwieldy. Furthermore, the purpose of employing PCA in the first place is to 
obtain a low-dimensional representation that can succinctly describe the training set, and 
using N2 eigenvectors for that will defeat the purpose. In fact, if the number of data points 
in the image space for which we wish to find a compact representation is less than the 
dimension of the image space (i.e. M << N2), only M-1 eigenvectors will be meaningful. 
 
 To circumnavigate the problem, Turk and Pentland proposed the following 
solution. Consider the eigenvectors vi of ATA such that 
 
   (8) iii

T vAvA µ=
 

The scalars µi are the corresponding eigenvalues of vi. Multiplying A
M
1  from the left for 

both sides of the equation yields 
 

 iii
T Av

M
AvAA

M
µ11

=  (9) 

 

 iii Av
M

CAv µ1
=  (10) 

 
which implies that Avi are the eigenvectors of the covariance matrix. With this treatment, 
we have effectively reduced the dimension of the matrix on which we have to work on 
from N2 by N2 to M by M. 
 
 Following this method, we should first construct the matrix L = ATA of M by M 
dimensions and find the M eigenvectors, vi, of L. The first M eigenvectors of the 
covariance matrix can be obtained by finding Avi, and the corresponding eigenvalues 
allow us to rank the eigenvectors according to their significance. As described in detail 
previously, these eigenvectors are termed Eigenfaces for our purpose, and the eight most 
significant Eigenfaces for our training set are displayed in (Figure 4). 
 
 The following question arises: how many Eigenfaces should be used? We 
obviously want to capture as much variations as possible of the training set with as fewer 
numbers of Eigenfaces as possible. For a small sized training set of about 10-20 
individuals, it was found that less than 10 Eigenfaces were enough to account for more 
than 90% of the variations among the training set, i.e. 
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where M’ < M << N2  

 
For our particular training set, it was found that the first 8 Eigenfaces were sufficient. It 
was reported in [3] that for an ensemble of 115 images, 40 Eigenfaces were sufficient for 
a “very good description” of the training set. 
 
 Each element of the training set {T1, T2, T3, … , TM} is projected onto “face 
space” by the following operation 
 
  (12) )()( Ψ−= i

T
kk TAvω

 
 MiMk ≤≤≤≤ 1,'1  
 
Therefore, for each face image in the training set, we would have a set of M’ weights, 

{ '21 ... Mi }ωωω=Ω , 1 , which describes the contribution of each Eigenface 
to the face image.  

Mi ≤≤

 
 
 
4. Classifying a Face Image  
 
 With each training image represented by the set of weights, standard pattern 
recognition methods can be used to classify input images into known identity classes. For 
this case, the Euclidean distance was used as the measure for classification. Before the 
value can be calculated, the test image, T , has to be projected onto the face space as 
well, using equation (12), yielding the set

P

PΩ . The test image is assigned to the class k 
which minimizes 
 
 22

, kPkC Ω−Ω=ε  (13) 
 
 with Mk ≤≤1  
 
 Since recognition is performed by projection first, any image similar-sized can be 
fed into the system. Images of individuals not previously seen in the training set, as well 
as non-face images, can be projected onto face space, yielding the set of weights PΩ . 
Hence, a competent face recognition must be able differentiate between a face image and 
non-face image, and if a face image is received, whether it corresponds one or none of the 
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individuals in the training set. For this purpose, the distance between the input image and 
face space, 
 
 22

IPF Φ−Φ=ε    (14) 
 
 with 
 
 Ψ−=Φ PP T  (15) 
 

  (16) ∑
=

=Φ
'

1
)(

M

i
iiI Avω

 
is proposed by Turk and Pentland to countercheck whether an input image is indeed a 
face image. The value of Φ  is simply the reconstructed image (less the mean vector) of 
the projection of the input image onto the face space spanned by the eigenvectors. 

I

 
 For the evaluations whether the distances  and  are sufficiently close, two 
arbitrarily chosen thresholds, 

2
Cε

2
Fε

Cθ  and Fθ , were used to define the maximum allowable 
distance to any face class, and the maximum allowable distance to face space. 
 
 With the treatment presented, for every input image to a trained system, we would 
four possible scenarios: 
 
 (1) 2

Fε  < Fθ  and min [  : 2
,kCε Mk ≤≤1 ] < Cθ  

 (2) 2
Fε  < Fθ  and min [  : 2

,kCε Mk ≤≤1 ] > Cθ  

 (3) 2
Fε  > Fθ  and min [  : 2

,kCε Mk ≤≤1 ] < Cθ  

(4)  > 2
Fε Fθ  and min [  : 2

,kCε Mk ≤≤1 ] > Cθ  
 
For the first two cases, the input image is found to be a face image. For scenario (1), the 
input image should be assigned the class k for which  is the minimum, whereas for 
case (2), it should be concluded that the input image is a face which is unknown. For the 
last 2 cases, the results indicate that the input image is not a face image at all. Scenario 
(3) is a false recognition which might have been undetected if not for the  measure. 

2
,kCε

2
Fε

 
 For the system trained with the set in (Figure 1), there were 12 individual faces, 
subject01 to subject12, from different ethnicity and gender. These faces were carefully 
chosen to have neutral expression as well as the same lighting conditions. They were then 
manually centered and cropped to be of the same size. The following test sets were 
obtained to evaluate the effectiveness of the Eigenface approach:  
 

(1) Test Set 1:  Subject01 with varying expressions and with glasses. 
(2) Test Set 2:  Subject09 with varying expressions and with glasses. 
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(3) Test Set 3:  Subject11 with varying expressions and with glasses. 
(4) Test Set 4:  Subject13, Subject14 and Subject15 with varying expressions. 
(5) Test Set 5:  Face and non-face images. 

 
The first three test sets constitutes known identities whose faces were trained previously. 
Test set 4 were made up of individuals not seen previously in the training set, and test set 
5 were generated from face as well as non-face images. Recognition results for Test Set 1 
to 4 are shown in (Figure 5), (Figure 6), (Figure 7) and (Figure 8) respectively.  
 

Test Set 5 was used to estimate the best value of  based on equation (14), with 
the results shown in (Figure 9). The results show that no satisfactory value of  can be 
established to discriminate between face and non-face images. Based on the measure of 
distance between input image and face space, images 3 and 4 which are face images were 
as distant from the face space as other non-face images, while images 17, 19 and 21 
which are non-face images were too close to the face space to be confidently judged as 
non-face images. 

2
Fε

2
Fε

 
From equations (14), (15) and (16), we can rewrite equation of the value of 

distance between input image and face space as 
 

 22
IPF TT −=ε  (17) 

 
 with 
 

 )  (18) )((
'

1
Ψ+= ∑

=

M

i
iiI AvT ω

 
From equation (18), we can see that T  is the reconstruction of the projection of   I PT
onto the first M’ Eigenfaces. The first M’ Eigenface were found to be able to account for 
more than 90% of the variations in the training set, and the reconstruction is very good 
approximation of T  if the image has a position in the image space close to the subspace 
defined by the Eigenfaces. This means that as long as an input image lies near the 
subspace defined by the Eigenfaces, regardless of whether the position of the image in 
the image space R

P

L (with L = N2) is close to the positions of the face images, T  and  
will be fairly similar, and  will have a small value. This causes face space distances 
defined by equation (14) to be close for both face and non-face images.  

P IT
2
Fε

 
To visualize this problem, refer to the 2D analogy in (Figure 10). The mean-

adjusted points which correspond to the mean-adjusted face-images, { , , , …, 
} , lie near the origin. After a PCA was performed on these points, it was found that 

the first principal component was sufficient to capture the major variations among the 
points, i.e. all points can be discriminated based on their projections onto the first 
principal component. When two test points, P and Q, which correspond to non-face 

1Φ 2Φ 3Φ

MΦ
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images are presented, it can be observed that their projections onto the principal 
component are Pω  and Qω  respectively. The reconstruction (minus the mean) of the 
representation of points P and Q based on the first principal component only yields the 
points P’ and Q’. The distance between points P and P’, as well as Q and Q’, is analogous 
to the distance measure defined by equation (14). It can be seen that although both P and 
Q correspond to non-face images, the values of  and  are starkly different, and 

 will be in the range of  values for points corresponding to face images. In other 
words, the system will classify point Q as a face image.  

2
,PFε

2
,QFε

2
,QFε

2
Fε

2Ψ

Fθ

F

θ

 
A better measure for face space distance would be to use deviation from mean 

directly. As it was reported in [3] that “Images of faces, being similar in overall 
configuration, will not be randomly distributed in the huge image space…”, in can be 
conjectured that face images are situated near the average face. Therefore, we can simply 
use the following as a measure of face space distance: 
 
 2 −= PF Tε  (19) 
 
Accordingly, a threshold  can be established to differentiate face and non-face images. 
The 2D analogy of this measure is shown in (Figure 11). Based on this measure, the 
results for Test Set 5 are shown in (Figure 12). It can be seen that a threshold value can 
be easily determined for discrimination between face and non-face images. 
 
 Based on the training set in (Figure 1), the results from Test Set 1 to Test Set 5 
can be used to estimate the optimal values for θ  and Cθ . Both values are approximated 
to be 
 
 F =3.5x108, Cθ =5.38x1015 (20) 
 

By using these values again, images of Subject01 to Subject12 and their variations, 
Subject13 to Subject15 and their variations, as well as non-face images are ran through 
the trained system to obtain recognition results. It was found that the system was able to 
produce 78% of correct results.  
 
 The results above did not take into account that different losses are associated 
with different classification results. For example, it is undesirable for the system to 
classify a face image from class i to class j for it is a catastrophic error, but it still 
acceptable for the system to refuse making a decision and classify a face as unknown. 
The values in equation (20) have been optimized for this purpose, with the loss matrix as 
follows: 
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Classification 
Result 

Face Image  
Class i 

Unknown  
Face Image 

Non-face 
Image 

Class j 
j = i 
j ≠ i 
 

 
0 
1 

 
1 
1 

 
1 
1 

Unknown 
Face 

0.5 0 0.3 

Non-face 
Image 

0.3 0.3 0 

 Table 1. The loss matrix 
 
  
A loss value of between 0 and 1 would mean that the classification result is not entirely 
wrong or right. Based on the loss matrix described above, the classification result was 
improved to 88% accurate. 
 
 
 
5. Conclusions 
 
 The Eigenface approach performs satisfactorily for our training set of faces. 
Although the results were not good enough for practical purposes, much can be done to 
improve it. For example, a well-devised preprocessing stage on the face images can be 
done to obtain a training set which is consistent in terms of spatial location of facial 
features. In our experiments, the face images were manually cropped from their original 
form by approximately placing the eye levels in the middle of the image. Another pre-
training process which can improve the performance is to normalize the input images to 
have zero mean and unit variance. In our experiments, the training images were used 
without much alterations. 
 
 The method was found to be robust enough to account for changes in facial 
expressions and addition of accessories, as our extensive experiments have shown. It was 
capable of classifying known faces as well as discarding unknown face images. The 
approach proposed by the originators to differentiate face and non-face images was 
unsatisfactory, and the flaw was explained in our report. More importantly, we developed 
a simpler but more effective method for the task. Experimental results show that the 
proposed method improved the results considerably.  
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Figure 1. The training set 

 

 
Figure 2. The average face 
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Figure 3. The caricatures corresponding to the training set. 

 

 
Figure 4. Eight most significant eigenface for the training set. 

 14

MECSE-6-2004: "A Study of the Eigenface Approach for Face Recognition", Tat-Jun Chin and David Suter



 

 
Figure 5. Recognition Result: Test Set 1 

 

 
Figure 6. Recognition Result: Test Set 2 

 15

MECSE-6-2004: "A Study of the Eigenface Approach for Face Recognition", Tat-Jun Chin and David Suter



 

 
Figure 7. Recognition Result: Test Set 3 

 

 
Figure 8. Recognition Result: Test Set 4 
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Figure 9. Result of Test Set 5: Face Space Distance based on equation (14) 

 

 
Figure 10. 2D Analogy of the face-space-distance problem 
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Figure 11. 2D Analogy of the face-space-distance problem: A new measure 

 

 
Figure 12. Result of Test Set 5: Face Space Distance based on equation (19). 
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