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ABSTRACT 

 
Mixture of Gaussians (MOG) has been widely used for robustly 
modeling complicated backgrounds, especially those with small 
repetitive movements (such as leaves, bushes, rotating fan, ocean 
waves, rain). The performance of MOG can be greatly improved 
by tackling several practical issues. In this paper, we 
quantitatively evaluate (using the Wallflower benchmarks) the 
performance of the MOG. with and without our modifications. 
The experimental results show that the MOG, with our 
modifications, can achieve much better results - even 
outperforming other state-of-the-art methods.   

 

1. INTRODUCTION 
 
Background modeling is an important and fundamental part for 
many vision tasks such as real-time motion segmentation, 
tracking, video/traffic surveillance and human-machine 
interface.  

In recent years, many background models have appeared 
[1-9]. Pfinder [6] is built upon the assumption that the scene is 
less dynamic than the object to be tracked and that the 
background is distributed according to a single Gaussian 
distribution. Although Pfinder can deal with small or gradual 
changes in the background, it fails when the background scene 
involves large or sudden changes, or has multi-modal 
distributions (such as small repetitive movements). The W4 
system [9] modeled the background scene by maximum and 
minimum intensity values, and the maximum intensity 
difference between consecutive frames in training stage. 
However, the background model from W4 may be inaccurate 
when the background pixels are multi-modal distributed or 
widely dispersed in intensity.  

The pixel-level Mixture of Gaussians (MOG) background 
model has become very popular because of its efficiency in 
modeling multi-modal distribution of backgrounds (such as 
waving trees, ocean waves, light reflection, etc), its ability to 
adapt to a change of the background (such as gradual light 
change, etc.) and the potential to implement the method in real 
time. Friedman and Russell [10] modeled the intensity values of 
a pixel by using a mixture of three Normal distributions and 
applied the proposed method to traffic surveillance applications. 
Stauffer and Grimson [4] presented a method that models the 
pixel intensity by a mixture of K Gaussian distributions. 

Although many variants of the MOG background model [4, 
5, 11] have been proposed, and MOG has been reported as being 
used in a wide variety of  the systems (e.,g., for tracking [6, 7, 

12], traffic surveillance [10], etc.), few papers provide a 
quantitive evaluation of the MOG method for background 
modeling. Toyama et. al. [1] implemented MOG and compared 
the result of MOG with that of “Wallflower”, claiming 
superiority of the latter. In this paper, we show that the result of 
MOG can be greatly improved if we modify the implementation 
of MOG in some aspects: dealing with shadow removal, 
background update, background subtraction. This provides a re-
evaluation of MOG using the same set of benchmarks as used in 
Wallflower study. 
 

2. MIXTURE OF GAUSSIAN MODEL  
 
In this section, we briefly describe the MOG model.  

The basic idea is to assume that the time series of 
observations, at a given image pixel, is independent of the 
observations at other image pixels. It is also assumed that these 
observations of the pixel can be modeled by a mixture of K 
Gaussians (K is usually set from 3 to 5). Let xt be a pixel value 
at time t. Thus, the probability that the pixel value xt is observed at 
time t is [4]: 
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where is the weight,  
,i tw ,i tµ  is the mean value, and 

,i tΣ is the 

covariance matrix for the ith Gaussian distribution at time t. 
For computational reasons, each channel of the color space 

is assumed to be independent from the other channels. The 
covariance matrix can then be written as:  
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The K distributions are sorted by /w σ and only the first B 
distributions are used to model the background, where 
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T is a threshold for the minimum fraction of the data used to 
model the background. 
 

3. SOME PRACTICAL ISSUES  
 

In a realistic environment, we find that using the MOG model is 
not enough to solve all problems met in background modeling. 
For example, a moving shadow region may be wrongly marked 
as foreground due to the illumination change, or relocation of a 
background object may result in some pixels in both the new and 
previous position of the background object being wrongly 
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labeled as foreground pixels, or a quick illumination change 
such as light switched on/off will greatly change the color of the 
background and increase the number of falsely detected 
foreground pixels, etc.  
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3.1 Shadow removal 
 
Incorrectly labeling shadows as foreground pixels may cause 
failure in applications such as tracking, video surveillance, 
motion segmentation, etc.  

When shadows appear or disappear, it is usually assumed 
that the chromaticity part at the pixel is not significantly 
changed. Normalized color is used in many background 
modeling methods such as [5, 7, 8] because normalized color is 
robust and less sensitive (than RGB color) to small changes in 
illumination caused by shadows.  

The normalized chromaticity coordinates can be written as: 
/( )
/( )
/( )

r R R G B
g G R G B
b B R G B

= + +
= + +
= + +

                        (4) 

Although using chromaticity coordinates can suppress 
shadows, the intensity information will be lost. Thus, we adopt 
the feature space ( r, g, I) as in [8], where r, g are scaled to the 
range [0, 255] (assuming the 8 bit image values are used). 

Let (rb, gb, Ib) be the expected value of a background pixel 
and (rt, gt, It) be the observed value at this pixel in frame t. If the 
background is totally static, we can expect /t bI I 1β ≤ ≤ when 
the pixel is covered by shadow and 1 /t bI I γ≤ ≤ when the pixel 
is highlighted by strong light. Figure 1 (c) shows an example 
where the shadow of the person is suppressed when using 
chromaticity coordinates (r, g) and the criterion that the intensity 
I is such that /t bI Iβ γ≤ ≤  (compare with figure 1(b) RGB). 

However, the background may be dynamic, i.e., multi-
modal distributed. Let iµ  be the mean value and 

iσ be the 
standard variance of the ith Gaussian distribution. For the ith 
Gaussian distribution, we replace Ib in the above criterion with 
the mean value iµ (that is: /t iIβ µ γ≤ ≤ ).  

 
 
 
 

 
 
              (a)                              (b)                                (c) 
Fig. 1. (a) Image of a person and shadows; (b) Detection result 
using RGB; (c) using (r, g, I).  
 

Another problem is that when the intensity is low, the 
normalized color (r or g) is very noisy. Consider the image 
sequence “Time of Day” (TOD) in the Wallflower dataset, 
which displays a room gradually changing from dark to bright. 
In the first several hundred frames, the intensities of image 
pixels are very low. Figure 2 (b) shows the distribution of pixel 
values of the r channel in the normalized color space and the R 
channel of RGB color space at image pixel (1, 1) in the first 200 
frames. The stand variance of the pixels values in the r channel, 
at image pixel (1, 1) for the first 200 frames, is 81.97; while the 
stand variance of the pixels values in the R channel is 0.91. To 

solve this problem we express the values of a pixel x, we use a 
mixed color space: 
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where Itd is a threshold. This modification improves the results, 
especially for video sequences including dark scenes, of 
background modeling (see section 4 for the results).  
 
 
 
 
 
 
 

Fig. 2. (a) The first frame of TOD; (b) The distributions of pixel 
values in the normalized r channel and R channel of the RGB 
color space at image pixel (1,1) in the first 200 frames of TOD. 
 
3.2 Updating the Background 
 
Following [4], given a new observation xt that belongs to the ith 
Gaussian distribution, the parameters of the ith Gaussian 
distribution at time t are updated as follows: 

, , 1(1 )i t i t txµ α µ α−= − +
2 2
, , 1) ( ) (T

i t t i tx

                  (6)                             

,(1 )i t t i tx ,σ α σ α µ−= − + − µ−    (7) 

the weight of the ith Gaussian distribution is adjusted as 
follows: 

                  
, , 1(1 )i t i t i tw w ,α α−= − + Μ                (8) 

whereα is learning rate; 
,i tΜ is 1 when the new observation 

matches the ith distribution, and 0 otherwise. 
This mechanism of updating the background has several 

advantages: such as robustly adopting to gradually light 
changing. However, if a background object is relocated to a new 
place, or if a new object is inserted into the background, the 
image pixels at both the new and previous position of the 
relocated background object or at the position of the inserted 
object, will not match the estimated K Gaussians and will be 
classified as foreground pixels. Although such changes of 
relocated or inserted background object may be temporarily of 
interest, it is not desirable to maintain these as foreground for a 
very long time. One common feature of the relocated or inserted 
background object is that once the position of the object is 
changed, typically, the object will stay there for a while. Thus, 
we employ a set of counters, which we call the “foreground 
support map”(FSM). FSM represents the number of times a pixel 
is classified as a foreground pixel:  

( , 1) 1
( , )

0
FSM x t if x is foreground pixel

FSM x t
if x is background pixel

− +
= 


   (9) 

When the FSM value of a pixel is larger than a threshold Ftd, we 
adopt this pixel to the background and use equations (6) – (8) to 
update the Gaussian model. This puts a time limit on how long a 
pixel can be considered as a static foreground pixel. 

Another issue is that of choosing the learning rateα . A 
high learning rate enables MOG to more quickly adapt to sudden 
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scene changes such as a light switching on/off, a sudden 
lightning, a sudden movement of uninteresting object, etc. 
However, a high learning rate also causes interesting foreground 
objects to quickly fade into the background. To obtain a 
satisfactory trade-off value is hard. Thus, we use extra 
information to adjust the learning rate. If the pixel number of 
detected foreground pixels is larger than a threshold (e.g., 70% 
of the whole image pixels as in Wallflower), we adjust the 
learning rate to a high value; otherwise, we set the learning rate 
to a low value.     

 
3.3 Background Subtraction 
 
Let xj be the jth component of pixel x. If 

1 2j or i ix mµ σ= − >  is 

true for all i=1,…K (m is usually set 2.5), or if 
3 3/ /ix or x iµ γ µ> β< is true for all i=1,…K, the pixel is 

labeled as a foreground pixel.   
However, there are two issues that should be considered: (a) 

the estimated standard variance could be overestimated or 
underestimated because the distribution of the pixels is not an 
ideal Gaussian. (b) when the intensity of a pixel is low, the value 
of 

3 / ix µ  can be very varied even when the pixel belongs to the 
ith Gaussian. Thus, to solve issue (a), we set an upwards 
threshold Smax and a downwards threshold Smin for the estimated 
standard variance. Smax and Smin are respectively set to 0.1 and 
15. To judge if the pixel is too far from the ith Gaussian, we 
check if max( , )j i ix mµ σ λ− > , where λ is a threshold and is 

empirically set to 5. To solve issue (b), we use the criterion 
3 3/ /i ix or xµ γ µ β> < for pixels with high intensities and 

3 max( , )ix m iµ σ λ− > for pixels with low intensities. Thus, 

we label a pixel as a foreground pixel if: 
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4. EXPERIMENTAL RESULTS AND COMPARISONS 
 
Toyama et. al. [1] benchmarked their algorithm “Wallflower” 
using a set of image sequences where each sequence presents a 
different type of difficulty that a practical task may meet. The 
performance is evaluated against hand-segmented ground truth. 
Two terms are used in evaluation: False Positive (FP) is the 
number of background pixels that are wrongly marked as 
foreground; False Negative (FN) is the number of foreground 
pixels that are wrongly marked as background.  
A brief description of the Wallflower image sequences follows: 
Moved Object (MO) - A person enters into a room, makes a 
phone call, and leaves. The phone and the chair are left in a 
different position. Time of Day (TOD) - The light in a room 
gradually changes from dark to bright. Then, a person enters the 
room and sits down. Light Switch (LS) - A room scene begins 
with the lights on. Then a person enters the room and turns off 
the lights for a long period. Later, a person walks in the room, 
switches on the light, and moves the chair, while the door is 
closed. Waving Trees (WT) - A tree is swaying and a person 

walks in front of the tree. Camouflage (C) - A person walks in 
front of a monitor, which has rolling interference bars on the 
screen. The bars include similar color to the person’s clothing. 
Boostrapping (B) - The image sequence shows a busy cafeteria 
and each frame contains people. Foreground Aperture (FA) - 
A person with uniformly colored shirt wakes up and begins to 
move slowly.   
We have tested three different variants of  MOG. MOG 1 uses 
mixed color space (normalized rgb color space for pixels with 
high intensities and in RGB color space for pixels with low 
intensities). Thus, for a image pixel with high intensity, x is 
expressed by (r, g, I); for a image pixel with low intensity, x is 
expressed by (R, G, I); MOG 2 uses normalized rgb color space; 
Each image pixel value x is expressed by (r, g, I); MOG 3 uses RGB 
color space. Each image pixel value x is expressed by (R, G, I). 
In each we eliminated the foreground pixels whose 4-connected 
foreground pixels number less than 8.  

From table 1, we can see that none of the methods achieve a 
lower value in both FN and FP for all seven image sequences. 
However, the modified MOG methods achieved best results in 
total error (TE) and total error excluding the light switch image 
sequence (TE*). In contrast to [1] we have shown that MOG, 
albeit with some modifications, can achieve high accuracy in 
background modeling. For the foreground aperture image 
sequence, Wallflower achieved the best result. However, the 
authors of [1] used a region-level processing as a post-
processing step for Wallflower. In contrast, we did not use a 
region-level post-processing step. For the light switch image 
sequence, Wallflower used frames with both light on and light 
off in the training stage. In the training stage, we used only 
frames with light off.  

 
5. CONCLUSION 

 
The purpose of this paper is re-evaluate MOG in background 
modeling in the light of some simple modifications one can 
make to tackle real world problems. The modifications can make 
MOG competitive, if not superior, to many other methods - 
including Wallflower, in contrast to the conclusions reached by 
the proponents of that algorithm [1].  
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Algorithm ET MO TOD LS WT C B FA TE TE* 

f. neg. 0 597 1481 44 106 1176 1274 MOG 1 
f.pos. 0 358 669 288 413 134 41 

6581 4431 

f. neg. 0 170 980 43 113 1174 998 MOG 2 
f.pos. 36 1671 1052 294 448 157 540 

7676 5644 

f. neg. 0 839 1965 97 304 1498 2290 MOG 3 f. pos. 0 29 772 388 1559 224 573 10538 7801 

f. neg. 0 772 1965 191 1998 1974 2403 Tracey LAB LP1 f. pos. 1 54 2024 136 69 92 356 12035 8046 

f. neg. 0 1008 1633 1323 398 1874 2442 Mixture of 
Gaussian2 f. pos. 0 20 14169 341 3098 217 530 27053 11251

f. neg. 0 1018 2380 629 1538 2143 2511 Bayesian 
decision2 f. pos. 0 562 13439 334 2130 2764 1974 31422 15603

f. neg. 0 879 962 1027 350 304 2441 Eigen-
background2 f. pos. 1065 16 362 2057 1548 6129 537 17677 16353

f. neg. 0 961 947 877 229 2025 320 Wallflower2 
f. pos. 0 25 375 1999 2706 365 649 

11478 10156

Table 1: Experimental results by different methods on Wallflower benchmarks. (Note 1 was reported in [2]; note 2 were reported in [1]). 
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Fig. 3: Experimental results on the Wallflower benchmarks. The top row shows frames of each image sequences; the second row shows 
the hand-segmented ground truth; the third row to the fifth row show the results of three variants of MOG
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