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Summary 

Photonic communication systems and networks have progressed significantly over the 
last decade. Their operational regions have expanded in temporal, spatial and spectral 
domains, thus demand innovative techniques for processing of communication signals 
and spectral channels as well as spatially routing them. The information transport 
infrastructure is currently based and directionally developed towards super-dense 
wavelength division multiplexing with provisional routing and switching in spatial (e.g. 
routing to different sub-network elements) and spectral (e.g. multiplexing/demultiplexing 
, filtering, adding/dropping of wavelength channels) domain. The processing of photonic 
signals is becoming very important in these diverse domains. 

 Ultra high bandwidth properties of fiber-optic signal processing systems could provide 
the necessary processing power for computationally demanding two-dimensional signal 
processing applications. The techniques of fiber-optic signal processing so far have not 
been applied to the area of two-dimensional signal processing. Further the matured 
fields of integrated optics and integrated photonics as well as recent developments of 
nano-photonics allow innovative structures for processing of lightwaves in photonic 
domain. 

This report/monograph has sought to integrate the fields of discrete signal processing 
and fiber-optic signal processing, integrated photonics and nano-photonics to establish a 
methodology based on which physical systems can be implemented. Because fiber-optics 
is essentially one-dimensional planar medium, the methodology has been proposed in 
order to implement 2-D signal processing using 1-D sources and processors. 

A number of 2-D filter design algorithms are implemented. The algorithms are 
applicable to photonic filters that perform 2-D processing. The developed 2-D filter 
design methods are generic. Several photonic signal processing (PSP) architectures are 
proposed to enable efficient coherent lightwave signal processing. Although the 
structures are originally developed for 2-D processing, they are also applicable for 1-D 
structures. Using a combination of one-dimensional filter structures, 2-D fiber-optic 
filters are constructed. The relationship between the fiber-optic model and the 
mathematical model has been linked to allow quick implementation. Using the developed 
methodologies, multi-dimensional coherent photonic signal processors can be designed.  

The technologies to support physical realization of such systems are not yet matured, 
therefore it is difficult to estimate the exact capabilities of such systems. However, 
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theoretically the architectures provide the potential for all-optical signal processing and 
it is envisaged that the processing bandwidth can reach the Tera-Hz region. We are 
proposing a number of multi-dimensional structures that would be realizable in the near 
future.  
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1. INTRODUCTION TO PHOTONIC SIGNAL PROCESSING 

In recent years, there has been a notable increase in the number of applications that 

require an extremely fast signal processing speed that cannot be met by current all-

electronic technology. Photonic signal processing (PSP) opens the possibilities for 

meeting the demands of such high-speed processing by exploiting the ultra high 

bandwidth capability of lightwave signals with specific applications in the field of 

photonic communications and fiber optic sensor networks. 

1.1 Photonic Signal Processing: A brief overview 

The field of signal processing is concerned with the conditioning of a signal to fit certain 

required characteristics such as bandwidth, amplitude, and phase. Conventional 

techniques of signal processing make direct or indirect use of electronics. For example, 

frequency filtering, a most important signal processing procedure, can be performed 

through direct electronic means such as tunable IC filters or indirectly by digitizing the 

input for subsequent processing by computers or special purpose digital signal processing 

chips. Although a high performance can be obtained using either of the techniques, 

electronic methods suffer from physical limitations  that govern the maximum processing 

speed. The demands for high performance beyond that achievable by electronic means 

have been increasing recently due to the increase in computationally demanding real-time 

processing applications. 

Using lightwaves instead of electronic signals as the information carrier in signal 

processing is an appealing concept. The full potential of the technology has been 

accelerated in recent years due to the invention and discovery of photonic crystals. 

Several important advances have been made in utilizing light as the information carrier 

including real-time spatial-light modulators and electro-optic devices, micro-ring 

resonators, photonic crystal fibers, guided wave crystal photonics, super-prisms [8]. 

Another incentive for using light as the information carrier is the superiority of fiber-
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optic communication systems which offer the wide bandwidth properties of photonic 

fiber medium. To fully exploit the capability of photonic systems, PSP is very essential.  

The field of PSP can be divided into two distinctive approaches which are outlined in the 

following sections. 

1.2 Spatial and Temporal Approach 

The first use of lightwaves for signal processing applications was developed as early as in 

1968 when an “integrated photonic correlator” [1] consisting of spatial light modulators 

and lenses in a planar waveguide was suggested. Further developments along this line 

were made and several experimental devices including acousto-optic spectrum analyser, 

a time-integrating acousto-optic correlator, a hybrid electro-optic/acousto-optic vector 

multiplier, a high-speed electro-optic analog-to-digital converter, and several fiber delay-

line processors [2] were demonstrated. 

The advantage of the spatial and temporal approach over the conventional electronic 

approach can be seen in light of the fact that lenses which are 2-D devices, have Fourier 

transform properties and can therefore act as a massively parallel Fourier transform 

processor. Taking advantage of the massive parallelism can mean the removal of the 

Von-Neumann bottleneck of present-day digital computers. Although an all-photonic 

computer does not seem feasible in the near future, a hybrid photonic-electronic 

computer offering ultra-high speed processing capability that could be realized by 

combining photonic information processing for some specific functions and electronics 

for general operation [2]. 
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 2D spatial 
modulator 

2D spatial 
modulator 

2D photodetector 
array 

Lighwave input 

Input pattern Reference pattern Output  

Figure 1.1: Spatial Fourier optical signal  processor. The photonic active components are the acousto-

optic diffractors. 

The drawback with spatial and temporal approach is the fact that the signal processing is 

performed in analogue manner. As shown in Figure 1.1, lightwaves carrying different 

signals must travel through different media therefore suffering acoustic diffraction 

resulting in crosstalk [2]. It is interesting to note that using holographic techniques, 

several layers of neural nets can be implemented with each layer in parallel format 

making spatial and temporal approach a suitable technique for neural network 

implementation. Although this technique may be useful in implementation of opto-

electronic computer, the approach is not suitable for signals that have been transmitted 

through photonic fiber communication networks. Such signals are sequentially linear and 

to be processed by a spatial and temporal processor, a conversion into a suitable 2-D 

format using demultiplexing devices and laser arrays will be required. The following 

section introduces a technique which is ideal for lightwave signals from guided media 

such as photonic fibers and photonic crystals.  

The spatial structures can e translated in fiber and integrated photonic forms using planar 

lightwave circuit  (PLC) using silica-on-silicon technology, for example the array 

waveguide filters acting as wavelength muxes and demuxes and spatial separators.  
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1.3 Fiber-Optic Delay Line Approach 

Guided-wave photonics and fiber optics provide alternative architectures for PSP to the 

classic spatial or time integrating architecture introduced in Section 1.2. The main 

advantage of guided-wave systems over spatial and temporal system is the wide 

bandwidth property available with photonic fiber transmission medium. For example, a 

silica fiber with a nominal 5µs delay can store 1 GHz bandwidth signals for time periods 

less than one millisecond[2]. Another advantage of guided wave optics can be stated as 

the elimination of acoustic diffraction. However, since photonic fiber is essentially a 1-D 

medium (signal propagates along one axis - that of the fiber), this architecture sacrifices 

the 2-D nature of light that is utilized in time and space integrating architectures. In 

effect, in guided-wave systems, the advantage of massive 2-D parallel processing 

capability of light is sacrificed for the wide bandwidth of guided wave optics which 

enables high speed processing. Despite this limitation which confines the use of fiber-

optic technology to signals from guided lightwave transmission medium, the simple fact 

that the current major usage of photonic systems is in communication systems makes the 

technology useful as it presents the possibilities of removing the bottleneck caused by 

opto-electronic conversion and therefore ensuring full utilization of fiber bandwidth. So 

far various uses have been found for fiber-optic signal processors as frequency filters, 

matched filters, correlators, and waveform and sequence generators [35]. 

 ref;ector optical coupler optical  fibre

Input lightwave 

Output  

Figure 1.2: Fiber-optic delay line processor. The coupler can be replaced by a3-port optical circulator. 

The reflector can be a fiber Bragg grating.. 

Figure 1.2 shows one possible configuration of fiber-optic processor. Although filter 

coefficients were realized using reflectors in Figure 1.2, other in-line components such as 

photonic attenuator/amplifier can also be used for implementing filter coefficients. It is 

evident that the operation of fiber-optic delay line filters is similar to that of digital 
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filters. In fact, the correct term to describe the fiber-optic signal processing would be 

‘discrete-time PSP’ rather than digital signal processing as the range of the input or 

output signal is not digital at all. In any case, the discrete-time property makes it possible 

to apply the well developed z-transform techniques to filter design. In Section 2, the 

application of the z-transform techniques for analysis and design of fiber-optic systems is 

discussed in detail. 

1.4 Motivation 

The demand for multi-dimensional photonic signal processing (M-D PSP) can be 

attributed to various factors due the growing feasibility of high-capacity digital 

transmission networks capable of transmitting ultra-high bit rate and time division 

multiplexing up to 160 Gb/s as well as fiber optical sensor networks. 

A problem with the implementation of such systems is the lack of devices that are 

capable of processing an enormous amount of data associated with multi-dimensional 

signals. With photonic transmission networks becoming the transport infrastructure, PSP 

technique has become increasingly more desirable compared to O/E and E/O conversion 

techniques. As discussed in Section 1.3, fiber-optic signal processing systems are ideal 

for such processing demands for several reasons: all-optical (or photonic) processing of 

photonic information of optical communication systems are possible using fiber-optic 

signal processing; 2-D signals usually require much higher bandwidth than 1-D signals 

and therefore must be processed by a high bandwidth system to allow real-time 

performance; it is likely that future telecommunication networks would be all fiber-optic. 

1.5 Summary of Section 1 

• The differences between electronic system and photonic system described. 

• The basic operating principles of PSP using spatial and temporal architecture 

described. 
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• Fiber-optic delay line signal processing as an alternative to spatial and temporal 

approach introduced. 

Table 1-1 outlines the differences between spatial-temporal approach and fiber-optic 

delay line approach. 

 Spatial and Temporal Fiber-optic 
Principle operating 

mode 
unguided guided 

Components used lenses, light modulators, mirrors, 
masks, LED or laser arrays, slits 

lasers or  LED’s, optical fibers, 
optical amplifiers(attenuators, 

reflectors) 
Time mode continuous-time discrete-time 
Flexibility hard to change configuration once 

developed 
easy to adjust the function using 

different tab values 
Analysis method difficult (some Fourier 

transforms) 
well known z-transform method 

Accuracy low high 
Cross-talk yes no 
Major use Photonic computing Communication signal processing 

Parallel processing 
capability 

massive parallel processing limited parallel processing 

Table 1-1: Outline of the two different approaches to PSP 

2. MULTIDIMENSIONAL SIGNAL PROCESSING 

Multidimensional signal processing enables processing of signals that 

depend on more than one co-ordinate. Although many concepts of 

multidimensional signal processing are straightforward extensions of 1-D 

signal processing theory, there are also significant differences that need 

to be clarified, particularly when referred to photonics. Discussions of 

multidimensional signal processing in this report is limited to 2-D signal 

processing applicable to photonics that is by far the most important class 

of multidimensional signal processing. 

2.1 Multi-dimensional Signal 

One may define multidimensional signals as signals whose values at a certain instance of 

time, space, or other coordinates depend on more than one variable. In 2-D signal 

processing, each of the properties depends on both x and y direction and therefore the 
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concepts of spatial signal, and therefore spatial frequency must be introduced. Spatial 

frequency does not depend on time, but rather depends on the spatial variations of the 2-

D signal. There are two distinct spatial frequencies, one in x direction and one in y 

direction. 2-D signals form the most important class of multidimensional signals and 

methods developed for 2-D signal can be generalized to signals of larger dimensions. 

This report concentrates on developing filter design methods for two-dimensional 

signals. 

2.2 Discrete Domain Signals 

A signal domain can be either continuous or discrete. For digital signal processing 

purposes however, it is convenient to ‘sample’ continuous domain signals at a discrete 

interval so that in effect it has a discrete domain. In 1D, signal to be processed or stored 

in a sequential manner can be sampled at discrete intervals of time or direction. Put into 

an equation form, 1D signal can be represented by a train of scaled impulses as in Eq 

(2.2.1) 

∆∆−∆= ∑
∞

−∞=
→∆

)()(lim)(
0

ktkata
k

δ     Equation 2.2.1: 1D signal 

where ∆ is the sampling period and n denotes the sequence number. The sampled signal 

can be infinite in extent and reflects this accordingly. If ∆ is infinitely short, then above 

expression reduces to the representation of a continuous signal as expected. 

In 2-D, a natural extension to (2.2.1) can be made as shown in Eq(2.2.2). 

∑ ∑
∞

−∞=

∞

−∞=
→∆→∆

∆∆∆−∆−∆∆=
1 2

21
212211221100

),(),(limlim),(
k k

kykxkkayxa δ   Eq. 2.2.2: 

Sampled 2-D signal 

There is an important difference between sampling of 1D signals and 2-D signals in 

practice. Assuming there is only one sampling device, 1D signal such as the one shown in 

Figure 2.1(a) can be sampled by taking values at discrete intervals. If the signal duration 

is infinite in extent, no truncation is needed as the transfer function defines the limit even 
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if the signal is not periodic. For 2-D signals with infinite duration, this is not the case. As 

it can be seen in Figure 2.1(b), if the 2-D signal was sampled infinitely in one dimension, 

the part of the 2-D signal which extends in the other dimension will never be sampled. 

For 2-D signals, there is always a predefined limit on how many samples are taken in 

each dimension. After reaching the limit in one dimension, the coordinate on the other 

dimension is incremented by one sampling period and the sampling process continues 

until the number of samples in the first dimension again reaches the limit. The process is 

repeated until the pre-defined number of samples in the second dimension is reached. The 

consequence is that the process gives a train of sampled 2-D signals stretched out in 1D 

as shown in Figure 2.1(c). For 1-D discrete time processing of 2-D signals, the signal 

must be sampled in this way so that the processor can implement the delays z1
-1 and z2

-1 

using only one dimensional delay photonic element. The limiting of sample space is 

similar to windowing or truncation performed on 1-D signals for some signal processing 

operations such as discrete Fourier transform (DFT). 

 

1 2 3 4 . . . . . . 
t 

(a) 

 0 

       

 

x 
(b ) 

14 15 18 19 20 

21 22 23 

16 17 

26 27 24 25 

30 31 32 33 34 28 29 

37 38 39 40 41 35 36 

44 45 46 47 48 42 43 

y  

0 1 4 5 6 

7 8 9 

2 3 

12 13 10 11 

 

 1 2 3 4 
t 

(c) 

 0 6 7 8 9 5 . . . . . . 48 

 

Figure 2.1 (a) Infinite extent 1-D signal.(b) 2-D signal with finite predefined limit of 

7×7(each index refer to the crossing at the bottom-left corner of the grid it belongs to) 

and (c) The signal in (b) fed into 1-D signal processor 
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Discrete space form of 2-D signal with predefined limits can be expressed by  Eq. 

2.2.3. 

∑∑
= =

−−=
1

1

2

20 0
22112121 ],[],[],[

n

k

n

k
knknkkanna δ   Eq. 2.2.3: Discrete-space sampled 2-D 

signal 

Using the above form of coding 2-D signals in a linear sequence, 2-D signal processing 

using 1-D medium such as optical fiber can be made possible. 

2.3 Multi-dimensional Discrete Signal Processing 

Having made a reasonable compromise in the size of the predefined limit, i.e. truncation 

window size, the Nyquist rate can be applied to 2-D signals to determine the sampling 

rate. In 1D, the Nyquist rate is twice the highest frequency component of the sampled 

signal and defines the sampling rate necessary to preserve the entire bandwidth of the 

signal. 

In 2-D, the direction in which the Nyquist rate is applied must be made clear as sampling 

in one dimension at the Nyquist rate may not guarantee the preservation of the 2-D signal 

if the signal varies faster with respect to the other dimension. To preserve the entire 2-D 

signal bandwidth, sampling must be performed at twice the highest spatial frequency 

component of the 2-D signal in ANY direction in the sample space. For example, 

consider a signal which has a 20 GHz component in n1-axis but has a 60 GHz component 

at 70° from n1-axis. In this case, the sampling rate of 40 GHz in both dimensions is not 

adequate as the signal has a frequency component of 60 GHz×sin(70°)=56GHz along n2-

axis. Since the sampling rates in the both dimensions are usually kept the same, sampling 

rate of 56×2= 112 GHz in both dimensions will preserve the entire 2-D signal bandwidth. 

In discrete-time signal processing, the term normalized frequency is used to describe a 

frequency independent of the system sampling frequency. The concept is applied in 2-D 

processing with a straightforward extension to spatial frequency.  

MECSE-1-2005: "Multi-Dimensional Photonic Signal Processing", Le Nguyen Binh



2.4 Separability of 2-D Signals 

A 2-D sequence is separable if it can be represented by a product of two 1-D sequences 

as shown in (2.4.1). Separable sequences form an important and special, but limited class 

of  2-D sequences. Many results in 1-D theory has a simple extension for separable 2-D 

sequences whereas for non-separable sequences such extensions often do not exist. If a 2-

D sequence is separable, the separability can be exploited to reduce the processing 

requirements resulting in considerably less amount of computation. Unfortunately, most 

2-D sequences are not separable. 

][][],[ 2121 ngnfnns =    Eq. 2.4.1: A separable 2-D sequence 

An example of a separable sequence is the unit sample sequence δ(n1, n2) shown in 

(2.4.2) (a) [10]. Other examples of separable sequences include the unit step sequence 

u(n1, n2) and the example in (2.4.2) (b). 

)...(].........[][],[ 2121 annnn δδδ =  2121 nnnn bba ++  = ( ) )....(..........211 bbba nnn +   

 Eq. 2.4.2: Examples of 2-D sequences 

2.5 Separability of 2-D Signal Processing Operations 

Similar to 2-D sequences, a 2-D signal processing operation can be classified as 

separable or non-separable. The consequence of an operation being separable is that the 

operation yields the correct answer when it is performed in two independent cascade 

stages with each stage performing the operation with respect to only one of the 

independent variables. The situation is illustrated in Figure 2.2. 
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Signal processing 

operation 2D Input 2D Output 

S. P. 
Operation 

in n1 
2D Output 

S. P. 
Operation

in n2 
2D Input 

 

Figure 2.2: A separable 2-D signal processing operation 

An example of a 2-D separable signal processing operation is double integration. A 

double integration procedure can be expressed by (2.5.1). 

∫ ∫
∞

−∞=

∞

−∞=

=
2 1

212121 ),(),(
n n

dndnnnfnnF     Eq. 2.5.1: Double integration 

The 2-D sequence f(n1, n2) is integrated with respect to n1 first, and then with respect to 

n2. The two procedures can be put in cascade and thus double integration operation is 

classified as a separable operation. Note that the separability of the 2-D input sequence 

f(n1,n2) is not a pre-requisite for the success of the operation. In addition, separable signal 

processing operations have separable impulse responses. The 2-D signal processing can 

be performed by convoluting the 2-D input with the 1-D filter impulse response in one 

dimension, and the operation can be completed by convoluting the result of the first 

convolution with the filter impulse response in the other dimension. It is therefore clear 

that the operations can be performed using a cascade stage of two filters. As with the case 

of separable sequences, separable operations form a special class of 2-D signal 

processing operations. Most signal processing operations are not separable. 

In discrete domain, separable operations can be expressed in terms of a product of two z-

transform transfer functions. For example,  Eq. 2.5.2 is double integration using 

Simpson’s rule for digital integration [11]. 

MECSE-1-2005: "Multi-Dimensional Photonic Signal Processing", Le Nguyen Binh



⎥
⎦

⎤
⎢
⎣

⎡
−
+

⋅⎥
⎦

⎤
⎢
⎣

⎡
−
+

= −

−

−

−

1
2

1
22

1
1

1
11

21 1
1

21
1

2
),(

z
zT

z
zT

zzH   Eq. 2.5.2: Digital double integration 

transfer function using Simpson’s rule 

It is clear that H(z1,z2) is separable. For other functions, the separability is often not the 

case. A circularly symmetric 2-D digital low pass filter for example (see Eq. 2.5.3) 

cannot be separated into a product of two functions each dealing with only one kind of 

delays (z1 or z2). In such cases, a way of dealing with non-separability must be found as 

cascade stages will no longer work. It is the non-separability of most 2-D signal 

processing functions that makes implementation of 2-D filters a difficult task. 
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Eq. 2.5.3: A version of 2-D digital low pass filter 

Another advantage of having a separable implementation is the issue of stability. The 

stability analysis of non-separable filters is very difficult and there are no known simple 

methods of checking the stability of 2-D filters directly from the transfer function or from 

pole-zero plots as is the case with 1-D systems1. However, with separable filters if 1-D 

sub-sections are stable, then the overall stability is guaranteed. Stability of 1-D filters can 

be guaranteed by having all system poles inside the unit circle. 

2.6 Summary of Section 2 

Although Sections 2.4 and 2.5 dealt with 2-D signals, the result is extendible to systems 

with larger dimensions. 

• The concept of multidimensional signal, and the term spatial frequency are 

introduced. 

                                                           
1 For more detailed discussion on stability checking using position of poles, refer to Section 4, [25]. 
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• Discrete-domain signal processing results are extended to 2-D systems. 

• Separability of sequences and signal processing operations are outlined and their 

significances illustrated. 

2.7 The Objective 

The objective of this section is the design methodology for developing a 2-D signal filter 

suitable for PSP using the fiber-optic and PLC signal processing architecture. 

3. DEVELOPMENT OF FILTER DESIGN METHODS FOR 2-D PSP 

In Section 2, the concepts of 2-D signal processing have been 

introduced. Out of many possible mathematical models for 2-D 

systems, the model best suited to fiber-optic signal processing 

must be found. In this section, two different mathematical models 

of representing 2-D systems are presented and a brief 

introduction to 2-D filter design methods is given. 

3.1 2-D Filter Specifications 

To specify a filter, two approaches can be adopted. One approach specifies a filter in 

mathematical form by specifying the transfer function or the state-space equations of the 

filter. This method can specify the exact behavior of the filter. The other approach 

specifies a filter by its transfer characteristics of magnitude and phase response or 

impulse response of the filter. This later approach is more intuitive than the former 

because it is easy to see how the filter would behave in practical implementation. 

However the accuracy of the filter then depends on the accuracy of the specification 

therefore can sometimes be inadequate. In any case, the later approach must go through 

the mathematical description before implementation. Developing a method for designing 

and implementing a filter from its dynamic characteristics therefore encompasses the 

mathematical description. 
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The method developed in this section assumes the spatial frequency responses of the 

filter to be specified. The 2-D photonic filter design process can be as follows: 

Specification of magnitude or impulse response the desired 2-D filter; Development of 

transfer function or state-space description of the 2-D filter; Development of signal flow 

diagram of the 2-D filter and Development of photonic implementation of the 2-D filter. 

To specify a filter using its frequency response, both magnitude and the phase responses 

need to be supplied. However, designing a filter with a certain phase response is a very 

difficult task. In many cases of interest, a condition of linear phase is all that is required 

and in this report, the condition is adhered to. The reason for requiring a linear phase can 

be explained by the Fourier transform of a 1-D linear phase filter,  Eq. 3.1.1. 

)()( φφω −⇔− tvefV j    Eq. 3.1.1: Fourier transform of linear phase filter 

In  Eq. 3.1.1, the phase φω is proportional to frequency. The Fourier transform (FT) 

of linear phase on the right of  Eq. 3.1.1 shows that a linear phase corresponds to 

pure time delay. The result is extendible to 2-D simply by substituting frequency by 

spatial frequency and time delay by spatial delay. A non-linear phase response leads to in 

uneven delays and therefore inter-symbol interference (ISI). 

3.2 Mathematical Model of 2-D Discrete Photonic Systems 

3.2.1 Transfer Function Description 

2-D transfer function description of the filter can also be explained by using a 2-D 

difference equation. As in 1-D, 2-D transfer functions can readily be turned into 2-D 

difference equations (see Eq. 3.2.1). 
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Eq. 3.2.1: 2-D trapezoidal integrator difference equation. 

Figure 3.1 illustrates the sample points which are summed in y(n1,n2) of Eq. 3.2.1. 

Because we are dealing with spatial delay and not time delay, the actual implementation 

of delay depends on the signal transmission format. If all points of the 2-D signal are 

transmitted in parallel, then the delays need not be time delay raising the possibility of 

parallel processing similar to that of spatial and temporal architecture described in 

Section 1.2. Further discussion on the issue is presented in Section 9. 
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Figure 3.1: Illustration of the difference equation Eq. 3.2.1 

A 1-D integrator transfer function amounts to just the first half or the second half of 

H(z1,z2) in Eq. 3-2 and can readily be turned into a signal flow graph  (SFG) as shown in 

Figure 3.2. 
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Figure 3.2: 1-D trapezoidal integrator signal flow diagram 

MECSE-1-2005: "Multi-Dimensional Photonic Signal Processing", Le Nguyen Binh



The SFG of 2-D version of the trapezoidal integrator transfer function H is shown in 

Figure 3.3. A notable difference is the presence of two different delay elements. In spatial 

terms, one represents the vertical delay and the other represents the horizontal delay. 
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Figure 3.3: 2-D trapezoidal integrator SFG diagram 

Whether a SFG can readily be turned into photonic domain depends on its structure. A 

major obstacle that prevents a direct translation of SFGs into photonic circuits is the 

number of complex interconnections. Too many complex interconnections can result in 

the loss of modularity making the photonic implementation of the transfer function 

difficult. 

Transfer functions can be manipulated into potentially useful forms for photonic 

implementation. One such manipulation technique is called continued fraction expansion 

realization (CFER) (see Box 3-1). Although the method results in reduced number of 

filter components, not all transfer function can be expanded easily. A method of 

designing a filter transfer function that can be expanded using continued fraction 

expansion is therefore required. Such a design method does not exist currently and as a 

consequence the use of CFER is confined to only transfer functions that are expandable. 

Box 3-1: Continued Fraction Expansion 
Given a transfer function, the numerator of the transfer function is recursively long-
divided by the denominator until the remainder is only a simple fraction. A possible form 
for a fraction which has been expanded using continued fraction expansion is shown in 
Eq. 3-3. 
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Eq. 3.2.2: An example of continued fraction expansion format [16] 
It is intuitively obvious that such expansions do not exist for all polynomial fractions. A 
method of checking the existence of such expansion is given in [16]. 
 

3.2.2 State-Space Equation Description  

State-space description can be seen as an alternative description method to the transfer 

function description. The advantages offered by state-space description include the 

notion of observability and controllability. Although such concepts are useful in 2-D 

dynamic control system, the applications of the concepts are not obvious in 2-D signal 

processing. At best, the main advantage of using state-space approach can be stated as the 

established techniques of 1-D state-space theory such as algorithms to manipulate state-

space matrices to obtain a reduced order system (see Section 6). 

3.2.2.1 An Algorithm for Conversion of a 2-D Transfer Function into 2-D State-space 

Equation 

In [14], a 2-D state-space description is formulated from a 2-D FIR transfer function 

description using the following method. Ref.[12] has given a more generalized case of 

transfer functions of 2-D IIR filters.  

Box 3-2: Formulation of state-space Eq.s from transfer function[14] 
A 2-D FIR transfer function can be expressed by 
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Eq. 3.2.4: 2-D state-space representation  

3.2.2.2 An Algorithm to Convert a 2-D State-space equations into a 2-D Transfer 

Function 

For state-space approach to be useful, there must be a method of converting 2-D state-

space Eqs into 2-D transfer function form. An algorithm to perform such a task could not 

be found in standard text books of digital signal processing, and therefore it had to be 

devised independently. The algorithm given in this section performs conversion from a 2-

D state-space equations specified in Box 3-2 to a 2-D transfer function description. 

By rearranging Eq. 3.2.5, we can obtain the transfer function form of the same system 

with input denoted by x and output denoted by y as in Eq. 3.2.6. 
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What makes the implementation of above equation difficult is the presence of matrix 

inverse. Because the matrix inside the bracket in  
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Eq. 3.2.6 

describes a 2-D system, the determinant of the matrix contains two independent variables 

z1 and z2 and cannot therefore be solved by simply obtaining the eigenvalues of the 

matrix and cross-multiplying to get coefficients of variables as in 1-D determinant 

calculation. 

Box 3-2: An Algorithm to obtain the characteristic polynomial of a matrix describing a 
2-D system 
1. Let A be the matrix of size m×n describing a 2-D system and Z be a zero matrix of 

size m×n. 
2. Let z1 = 0, z2 = 0. 
3. Let A’ be a matrix formed by eliminating m-z1 rows and n-z2 columns from matrix A. 
4. Let Zz1,z2 = Zz1,z2 + ∆(A’). ∆ is 1-D determinant operator. 
5. Repeat step 3 and 4 until all combinations of z1 rows and z2 columns are tried. 
6. Repeat step 3 to 5 with different value of z1 and z2 until all coefficients of the 

characteristic polynomial Z are found. 
7. Reverse the signs of elements of Z whose indices sum to an odd number. 

The resulting matrix Z contains the coefficients of 2-D characteristic polynomial in 

format shown in Eq. 3.2.8. 
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 Eq. 3.2.7: 2-D characteristic polynomial 
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For the 2-D transfer function description, denominator and the numerator can be 

calculated by 
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 Eq. 3.2.8: Transfer function numerator and 

denominator 

3.3 Filter Design Methods 

3.3.1 Direct Design Methods 

Direct design methods include window method, frequency sampling method, 

transformation method for FIR filter implementations, and impulse response method for 

IIR filters. All of the design methods listed are similar to the 1-D methods of the same 

name involving some extensions of the concepts into 2-D and they all result in non-

separable transfer functions. 

The general format of non-separable filter transfer functions generated by FIR filter 

design methods is given in Eq. 3.2.4 and the most general form of 2-D FIR filter signal 

flow diagram is shown in Figure 3.4. In Section 4, the details of the algorithms and the 

implementations of 2-D direct design FIR filters are discussed. Direct design methods for 

IIR filters are also discussed in Section 4.1 and Section 8.10. 
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Figure 3.4: General form of FIR filter signal flow diagram [15] 

3.3.2 Use of Matrix Decomposition 

 In [16], Mitra introduces a method where matrix decomposition is used to separate a 

non-separable function into a cascade of two separable filter stages each one involving 

only one set of delay elements. A drawback with Mitra’s method is that there is no 

general structure for filter implementation. The filter structure is therefore heavily 

dependant on the transfer function and this lack of generality of filter design limits the 

usefulness of the method in photonic filter implementation where the final product 

corresponds closely to the SFG representation of the filter transfer function. Figure 3.5 

shows a part of the filter implementation. 
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Figure 3.5: A subsection of filter in [16] 

Another approach which uses matrix decomposition is by decomposition of 2-D 

magnitude specification into the sum of products of 1-D magnitude specifications. 

Because 2-D magnitude specification becomes a set of two 1-D magnitude specifications, 

design process of a 2-D filter reduces to a set of 1-D filter designs for which established 

design methods are aplenty. In addition, the resulting 2-D filter is separable. Section 5 

discusses a number of 2-D filter design algorithms based on matrix decomposition of 2-D 

magnitude specification.  

3.4 Summary of Section 3 

• Two methods of specifying a 2-D filter is introduced. 
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• The outline of filter design steps is presented. 

• Algorithms to convert between state-space description and transfer function 

description are given. 

• Two approaches of 2-D filter design procedure, namely direct design and matrix 

decomposition design are introduced. 

4. DIRECT 2-D FILTER DESIGN METHODS 

As the first of two streams of 2-D filter design methods, direct 2-

D filter design methods are introduced. This class of 2-D filter 

design methods does not use matrix decomposition and instead 

uses 2-D magnitude specifications directly to produce non-

separable designs. 

4.1 FIR and IIR Structures in 2-D Signal Processing 

A digital filter can be divided into two broad classes, FIR (Finite Impulse Response) and 

IIR (Infinite Impulse Response). FIR filters only use feed forward structure and therefore 

are non-recursive, whereas IIR filters use feedback as well as feed forward structure and 

therefore are recursive. The impulse response of an IIR filter is infinite in duration, 

therefore the name ‘infinite impulse response filter’. 

Given a 2-D frequency response specification, one can either try to formulate a FIR filter 

transfer function or an IIR filter transfer function. There are several factors which must 

considered when deciding which structure to implement for a given frequency response 

specification. 

• Linearity of the phase response of the filter 

• Stability of the filter 

• Order of the implemented filter 
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Linearity of the designed filter’s phase response is very important as explained 

previously in Section 3.1. Linear phase FIR filters are very easy to design as the 

condition for the linear phase is simply a symmetric impulse response which in turn is 

guaranteed if the magnitude response of the 2-D filter is symmetric about the two axis. 

For 2-D IIR filters, phase linearity is much more difficult to guarantee. Often IIR filters 

are specified only with magnitude characteristics and the phase response is generally 

accepted for what it is(which is non-linear). The lack of control over phase response of 

IIR filters limits its usefulness in many applications [10]. 

Stability is a very important issue in designing of any dynamic system which requires no 

explanations. The advantage of 2-D FIR filter over 2-D IIR filter regarding the issue of 

stability is that for 2-D FIR filters, stability is inherent in its definition. Since the impulse 

response of FIR filter is finite in duration, bounded input results in bounded output and 

the filter is therefore always stable. Although 2-D IIR filters can be designed to be stable, 

as mentioned in Section 2.5 there is no simple algorithm for checking the condition for 

stability of a 2-D IIR filter. A mathematical theory involving complex cepstrum to check 

for the stability condition of 2-D filters is quite involved and most algorithms for 

checking the 2-D stability simply repeat 1-D stability condition over the 2-D space many 

times over which can be computationally very inefficient [10]. As a consequence of the 

lack of usable algorithms or simple method for stability testing, there is no known 

method of designing stable 2-D IIR filters [10]. In practice, 2-D FIR filters are therefore 

much more preferred to 2-D IIR filters. 

Order of the filter refers to the number of delay elements in the numerator (or the 

denominator if the filter is IIR). Order of the filter has a direct consequence in the final 

implementation of the filter as the determining factor of number of processing elements. 

Higher order filters require more processing elements than lower order filters which 

makes low order filters more desirable. One distinctive advantage of IIR filters over FIR 

filters is that the order of the filter required for a given magnitude specification is smaller. 

FIR filters can sometimes require an excessive order(the definition of ‘excessive’ 

depends on the implementation medium - for example in software implementation of a 

digital filter, a 1000th order filter might be quite acceptable but with fiber-optic delay 
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line filters, the maximum order is well below 50). For example an integrator, which has 

an infinite impulse response by nature can be described using a first order filter within 

12.5% error [11] whereas achieving the same error with 1st order FIR filters would be 

impossible. In addition, 2-D filters usually require much higher order filters than 1-D 

filters of similar transition band requirements and it is therefore important that the 2-D 

filter design methods keep the order of the filter to an acceptable level. 

4.2 Frequency Sampling Method 

As the first of the direct 2-D filter design methods, 2-D frequency sampling method 

produces an FIR filter with the minimum of fuss. Using the fact that the transfer function 

of a FIR filter is same as the impulse response of the filter, 2-D frequency sampling 

method takes discrete Fourier transform of even-spaced samples of 2-D frequency 

response and uses the result as the coefficients for 2-D transfer function. It is noted that 

the procedure is identical to that of 1-D frequency sampling method. 

It is observed in [10] that the filter designed using frequency sampling method is not 

optimal as far as number of delay elements is concerned. Also, the frequency response of 

the filter is controlled only by the sampling rate of the frequency sampling and the nature 

of the frequency samples. For example, increasing the frequency sampling rate will 

increase the number of discrete sampling points of the impulse response and hence will 

result in a filter with a better frequency response but with a larger order. It is also found 

that frequency response can be improved considerably especially around the transition 

band if the ideal frequency response takes account of the transition frequency values. 

Example 4-1: A filter design example using frequency sampling method 
Design Aim:  A low pass filter with normalized cut off frequency of 0.5 in both 

dimensions. 
Method:  Frequency sampling method 
Program used: FIR2-DFS.m 
Result: The magnitude response of the designed filter is shown below. Filter is of 

33×33 rd order and the error is 3.63%. 
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Figure 4.1: Magnitude response of a filter designed using frequency sampling method 

The filter error is calculated using Eq. 4-1 where 2N1+1 and 2N2+1 are order of the filter 
in n1 and n2 dimension, respectively. Hd is the ideal frequency response, Hf is the actual 
filter response, and Ω1 and Ω2 are the frequency sampling rates. 
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Eq. 4.2.1: Filter error calculation formula 
The magnitude response shown below is obtained by incorporating the transition band 
values into the ideal frequency response parameter. It can be seen that the ripple in the 
transition band has disappeared and the error is found to be only 2.74% which is nearly 
1% less than that obtained without any transition band consideration. 
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Figure 4.2: Magnitude response of the filter designed with transition band consideration 
The response shown below is obtained with a filter of order 20×20. The error is found to 
be 5.85% which compares unfavorably with 3.63% obtained with the first design. Clearly 
lower order filters result in considerably worse performance. 
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Figure 4.3: Magnitude response of filter of order 20×20 

 

4.3 Windowing Method 

The window method for 2-D filters use a 2-D window instead of 1-D window to achieve  

a finite impulse response sequence in 2-D. As with 1-D windowing method, the 2-D 

windowing method begins by performing a Fourier transform on the desired frequency 

response expression. The impulse response of the filter in 2-D is then multiplied by the 

expression for window. The purpose of multiplying by a windowing function is to reduce 

the effect of sharp transitions in the transition band and also to make the impulse 

response finite through truncation. The windowing function is chosen so that the 

frequency response is least affected and the impulse response is as short as possible. It is 

noted in [10] that the performances of window method and the frequency sampling 

method are similar and an example is therefore omitted.  

4.4 McClellan Transformation Method 

McClellan transformation method takes an entirely different approach to the design 

process of 2-D filters.The idea is to transform a 1-D FIR filter into a 2-D filter of the 

desired characteristic. The 1-D filter can be designed using any 1-D filter design method 

so that its frequency response is a cross-section of the desired 2-D filter response (see 

Figure 4.4). 
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(a) 2D filter magnitude response 
(b) A cross-section of the 2D filter 

magnitude response  

Figure 4.4: Desired 2-D filter magnitude specification and the required 1-D filter 

specification 

The transformation procedure can be described mathematically by Eq. 4-2. Given the 

transfer function of 1-D FIR filter, each coefficient is multiplied by the transformation 

function T which is a function of ω1 and ω2. The resulting transfer function is also a 

function of ω1 and ω2 and describes a 2-D filter with the desired magnitude response. 
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 Eq. 4.4.1: 2-D filter transformation 

In Eq. 4-2, RT is the region of support of t(n1, n2) which describes the transformation 

function. It should be noted that using different transformation functions, many 2-D 

filters can be designed from a single 1-D filter. It is also important to note that as long as 

the 1-D filter is a linear phase filter, the transformed 2-D filter is also a linear phase filter 

as long as phase of the transformation function T is linear(i.e. the transfer function is 

symmetric about the zero delay point - see Eq. 4-3 in Example 4-2) since multiplying a 

linear phase function by another linear phase function does not affect the linearity of the 

phase of the resultant function. 

Example 4-2: 2-D filter design using transformation method 
Design Aim: 2-D low pass filter with frequency cut off at 0.5 in both dimensions 
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Method: McClellan transformation method. The filter order is 13×13 and the 
transformation function used is given by 
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Eq. 4.4.2: Transformation function used in this example 
Graphically, above transformation function can be expressed as in Figure 4.5. 
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Figure 4.5: Transformation sequence used [10] 

Program used: FIR2-DTF.m 
Result: The error calculated = 13.71%. 
Figure 4.6 shows the frequency response of the designed filter 
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(a)                                                        (b) 

Figure 4.6: 
(a) Frequency response of a filter of order 13×13 designed using transformation method 
(b) Impulse response(filter coefficients) of the filter designed by transformation method 

 

It is clear that the performance of the filter designed using the transformation method is 

somewhat worse than that designed using frequency sampling method. A factor which 
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should be taken into consideration is the order of the filter. The order of the filter in 

Example 4-2 is only 13×13 whereas in Example 4-1 it is 33×33. The reason for such large 

difference lies with the coefficients of the resulting filter of transformation method. In 

Figure 4.6(b), the coefficients of the filter as originally designed by the transformation 

method is shown as the form of impulse response of the filter. Clearly, it is a 33×33 order 

filter, however the surrounding 10 rows and columns do not contribute to the filter 

response at all and therefore can be removed without affecting the response of the filter 

and the remaining coefficients constitute a 13×13 order filter. 

The transform function has a large bearing on the eventual filter transfer function. The 

filter shown in Figure 4-7 is of the same order as the filter in Figure 4.6(a) and 1-D 

prototype function is identical. However, the transformation function is now a 7×7 

function2. It can be seen that the transition band is much more distinct whereas the 

stopband is not as well attenuated as the filter response in Figure 4.6(a). 
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Figure 4.7: 2-D filter designed using a different transform function 

The overall error of the filter whose frequency response is shown in Figure 4.7 is found 

to be 12.84%. It is clear that the good performance in passband and the transition band is 

offset by the poor stopband attenuation. Finally, it is noted that the resulting transfer 

function is a non-separable FIR transfer function. 

                                                           
2 [13] discusses methods of designing such transformation functions in great detail 

MECSE-1-2005: "Multi-Dimensional Photonic Signal Processing", Le Nguyen Binh



4.5 Summary of Section 4 

• The differences between FIR structure and IIR structure are discussed with reference 

to the implications to 2-D filters. 

• Frequency sampling method is implemented and an example of filter design using 

frequency sampling method is shown. 

• Windowing method in 2-D is briefly discussed. 

• McClellan transformation is shown and implemented. Two filters are designed using 

two different transformation functions and the performances are analyzed. 

5. MATRIX DECOMPOSITION METHODS 

As the second of the two streams of 2-D filter design methods, 

matrix decomposition methods are introduced. Matrix 

decomposition methods result in a set of separable 1-D 

magnitude responses which can be implemented using any 1-D 

filter design methods. Using either this approach or direct 

approach of Section 4, a transfer function of the desired 2-D filter 

can be obtained which can then be implemented by the photonic 

implementation methods discussed in Section 8. 

5.1 Single-Stage Singular Value Decomposition 

In Section 3.3.2, the application of matrix decomposition to 2-D filter design is briefly 

introduced. Matrix decomposition is a mathematical procedure where a matrix is split 

into a sum of products of vectors as shown in  

∑
=

=
n

i
iivu

1

2/1λH    Eq. 5.1.1: Matrix decomposition 
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where λI is ith eigenvalue of H and ui and vi are the decomposed vectors. An example of 

matrix decomposition is the well-known LU decomposition which splits a matrix into a 

lower triangular matrix and a upper triangular matrix. Example 5-1 shows how LU 

decomposition can be used to express a matrix as sum of products of vectors 

Example 5-1: LU decomposition 

[ ] [ ]

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=••=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

987
654
321

000
5871.04258.00
1743.18517.00

987
2429.55712.44
4867.11432.11

1743.18517.00
0
5.0

1
987

1
5714.0
1429.0

000
1743.18517.00
987

15000.05714.0
011429.0
001

001
100
010

987
654
321

ULPA

 

∑
==

••=
3

3,2,1,1 xi
ixxi ULPA  

Eq. 5-2: LU decomposition expressed as sum of products  
 

A decomposition method particularly suited to 2-D filter design needs is the singular 

value decomposition (SVD). The SVD reduces a 2-D matrix into two matrices U and V, 

and a diagonal matrix S of singular values of the original matrix. Singular values are 

related to the eigenvalues of the matrix and the result has the form 

∑
==

=

••=
N

Nxi
xiiixi

..2,1,1

BSU

BSUA
 

Eq. 5.1.2: Singular value decomposition 

The unique feature of SVD is that the matrix ‘power’ is distributed to the singular values 

of the matrix in decreasing order of the position of the singular value in the matrix S 

starting from the top left corner. Consequently, to approximate the matrix A by the 
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product of just one set of two vectors Uxi and Bxi, the best approximation will be made by 

the product of first set of vectors that result from SVD of the matrix. Mathematically, the 

property can be described as shown in Eq. 5-3. As an example, if we wanted to 

approximate the matrix ⎥
⎦

⎤
⎢
⎣

⎡
43
21

 by the product of a set of vectors, SVD would be 

performed on the matrix resulting in U = ⎥
⎦

⎤
⎢
⎣

⎡
− 4046.09145.0

9145.04046.0
, V = ⎥

⎦

⎤
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⎡
− 5760.08174.0

8174.05760.0
, 

and S = ⎥
⎦

⎤
⎢
⎣

⎡
3660.00
04650.5

. Ux1 = [ ]9145.04046.0 , S11 = 5.4650, and Vx1 = 

[ ]8174.05760.0  form the first set of vectors. The resulting approximation would then 

be ⎥
⎦

⎤
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0853.48790.2
8072.12736.1

1111
T

xx VSU . To obtain a better approximation of  ⎥
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, the 

product of the second set of vectors could be added. 
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Eq. 5.1.3: Minimal square error approximation property of SVD [14] 

In [17], the SVD is used to decompose a 2-D magnitude specification matrix into two 1-

D magnitude specification. The result is a design procedure in which a 2-D filter design 

becomes a set of 1-D filter design. The matrix decomposition methods have several 

advantages over the direct methods of Section 4. 

1. The resulting 1-D magnitude specifications can be met by any of the standard 

algorithms for 1-D filter design such as least-squares method or Parks-

McClellan algorithms available in many computer simulation packages. 

2. As long as 1-D filter sections are stable, the overall 2-D filter is also stable. 

The stability of final 2-D design can therefore be guaranteed easily without 
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the need for heavy mathematical analysis or computationally expensive 

algorithms involved with 2-D filter designs. 

3. The filter designer is given the flexibility to decide how many sets of 1-D 

filter sections are included in the system. 

4. The resulting 2-D filter is parallel in structure and therefore does not introduce 

unnecessary processing delays. 

All 2-D filters designed using matrix decomposition can be described by Eq. 5.1.4 where 

Fi(z1) and Gi(z2) are 1-D filter sections and K is the number of singular values included in 

the system. 

∑
=

⋅=
K

i
ii zGzFzzH

1
2121 )()(),(  Eq. 5.1.4: 2-D filter transfer function designed using 

matrix decomposition method 

A simple example of 2-D filter design using only one filter section as in [17] is given in 

Example 5-2. The example chosen is deliberately simple to show the fundamental 

concepts involved in 2-D filter design using matrix decomposition methods. 

Example 5-2: A 2-D filter design using SVD with single parallel section 
Design Aim:  A low-pass filter with normalized cut-off frequency of 0.5 in both 

dimensions. 
Method: Single-stage singular value decomposition 
Program used: SVDFIR2-D.M 
Result: With single stage, the error of frequency response of the designed filter is 

6.663%. Although this is quite low, it may not be acceptable in some cases 
for which an extension of single-stage singular value decomposition may 
be employed as shown in Section 5.2. 
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(a)                                    (b) 

Figure 5.1: 
(a) Magnitude specification of low-pass filter 

(b) Magnitude response of 15×15 2-D filter designed using single stage singular value 
decomposition 

The 1-D filters designed are FIR filters and the actual filter coefficients are given in a 
table format as shown below. It is noted that the first and the second filter sections are 
identical since the frequency specification is symmetric about the origin. Consequently 
for symmetric filters, only one 1-D filter needs to be designed to complete the design for 
a 2-D filter implying significant simplification in the filter design procedure. 

Coefficient order b1 b2 
0 -0.0007 -0.0007 
1 0.0010 0.0010 
2 0.0025 0.0025 
3 -0.0090 -0.0090 
4 -0.0273 -0.0273 
5 0.0197 0.0197 
6 0.1837 0.1837 
7 0.3553 0.3553 
8 0.3553 0.3553 
9 0.1837 0.1837 

10 0.0197 0.0197 
11 -0.0273 -0.0273 
12 -0.0090 -0.0090 
13 0.0025 0.0025 
14 0.0010 0.0010 
15 -0.0007 -0.0007 

 
Table 5-1: Coefficients of the FIR filter designed using 

single-stage singular value decomposition 

The filter designed in Example 5-2, when implemented takes on the structure shown in 

Figure 5-2. In case of a multiple-stage implementation, several of the structure shown 

below would be connected in parallel to form the 2-D filter (see Figure 5.5). 
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 1D filter in z1 
domain with 

coefficients b1 

1D filter in z2 
domain with 

coefficients b2 
2D 

output 
2D 

input 
 

Figure 5.2: Separable implementation of 2-D filter using single-stage singular value 

decomposition 

5.2 Multiple-Stage Singular Value Decomposition 

Multiple-stage SVD takes the leap forward from single-stage SVD method and includes 

stages that belong to second largest singular values and smaller. Depending on the 

relative magnitude of singular values, the inclusion of extra stages can result in a sizable 

reduction in error, or sometimes it has no effect at all. Example 5-3 shows a case where 

inclusion of multiple stages results in more than 30% reduction in the error of the single 

stage implementation. 

Example 5-3: A 2-D filter design using SVD with multiple parallel sections. 
Design Aim:  A 90° fan filter of order of 32×32 
Method: Multiple stage singular value decomposition with 1-D FIR filters 
Program used: SVDFIR2-D.m 
Result:  The error of frequency response of the filter is given as 18.65%3. 
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(a)                                                        (b) 

                                                           
3 Although this value is quite large compared to the single digit figure we have been obtaining so far, it should be kept 

in mind that the error largely depends on the specification. Therefore it is only meaningful to compare error between 
different implementations of the same magnitude specification. 
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Figure 5.3 
(a) Magnitude specification of 90° fan filter 

(b) Magnitude response of 32×32 2-D filter designed using multiple-stage singular value 
decomposition. 

The filter is obtained after six parallel stages. Figure 5.4 shows the error and magnitudes 
of the singular values against. the number of included parallel stages. Figure 5.4 appears 
to show that there is roughly a linear relationship between the error curve and the 
singular values curve. The relationship is actually more subtle than this. A little thought 
will reveal that greater the gradient of singular value curve is, flatter the error curve will 
be. This is because if there is a large difference between two singular values, adding the 
stage which belongs to the smaller singular value will have little effect on the overall 
performance. As a rule of thumb, if the singular value of a paralle stage is less than one-
tenth of the first singular value, then it is probably not worth including. 
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Figure 5.4: Errors and magnitudes of singular values 

As it can be observed in Example 5-3, quite complex magnitude specifications can be 

achieved by filters designed using singular value decomposition method. The filter of 

Example 5-3 required 12 1-D filter designs overall. With the current computer 

technology, calculations for around ten 32nd order 1-D filters can be done virtually in 

real time and therefore the SVD method is practical even for adaptive filtering. The 

resulting filter structure is shown in Figure 5.5. 

MECSE-1-2005: "Multi-Dimensional Photonic Signal Processing", Le Nguyen Binh



 1D filter section 
F1(z1) 

1D filter section 
G1(z2) 

1D filter section 
F1(z1) 

1D filter section 
G2(z2) 

1D filter section 
F6(z1) 

1D filter section 
G6(z2) 

 

Figure 5.5: Structure of 2-D 90° fan filter 

5.3 Iterative Singular Value Decomposition 

There are many variations on the theme of matrix decomposition, in particular the SVD. 

The iterative singular value decomposition (ISVD)[18] is devised in order to avoid 

‘negative’ magnitude definitions that arises from the plain SVD procedure of the 

previous section. By keeping the 1-D magnitude positive, the paper claims that the 1-D 

filter design procedure becomes less intricate. The ISVD is described in Box 5-1. 

Box 5-1: Iterative singular value decomposition [19] 
1. Let the 2-D magnitude specification be A. Let A+

1 = A and A-
1 = 0. 

2. Perform singular value decomposition on A+. λ1i are the singular values of A+
1. 

By the definition of SVD given in Eq. 5.1.3, λ11 is larger than any other λs. 

∑

∑

=

=

+

⋅=

=

1

1

1
1

2/1
1

2/1
11

1
1111

r

i

t
iiii

r

i

t
iii

vu

vuA

λλ

λ
 

3. Because of Perron’s result on non-negative matrices[18], the vectors u11 and v11 
are also non-negative. It is then possible to estimate A+ by t

11
2/1

11
2/1

1111 vu λλ ⋅ . 
Assigning the first of the pair as F+

1 and G+
1 gives the first non-negative 1-D 

magnitude specifications. F1 and G1 are assigned F+
1 and G+

1 
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=

11

11

1 1

GG
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S

  

4. A2 can now be calculated using Eq. 5-5. This matrix can now be separated into 
+
2A  and −

2A  sum of which make up the error matrix A2. 
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Eq. 5.3.1: Error matrix 
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5. Singular value decomposition is performed on both matrices resulting in two sets 
of vectors ++

222 ,, GFS  and −−
222 ,, GFS . S2 is 1 for the vectors resulting from 

decomposition of A+, and -1 for the vectors from A-. 
6. Euclidean norms are calculated for resulting error matrix defined in Eq. 5-6. The 

same operation is performed with −−
222 ,, GFS  in place of ++

222 ,, GFS  in Eq. 5-6 
with −

2E  as the result. 
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Eq. 5.3.2: Euclidean norm 
7.  +

2E  and −
2E  are compared. Since smaller error means closer approximation to the 

original matrix, the set of vectors that results in the lower Euclidean norm is 
chosen as F2 and G2. 

8. A3 is assigned the error matrix A2-A+ or A2-A- depending on whether +
2E  is 

greater or smaller than −
2E . Steps 4,5,6 and 7 are then repeated with appropriate 

substitution. 
The procedure is repeated until a satisfactory approximation of the original matrix is 
obtained.  
 
Compared to plain singular value decomposition algorithm, ISVD algorithm converges 
more slowly because adding an extra stage does less to compensate for the error than 
plain SVD algorithm since only a part of the error is compensated. An example of a filter 
designed using the iterative singular-value decomposition is given in Example 5-4. 
 
Example 5-4: 2-D Filter design example using iterative singular value decomposition 
Design aim: A bandpass filter of order of 32×32 with normalized passband between 0.3 

and 0.6. 
Method: Iterative singular value decomposition algorithm 
Program used: ISVDFIR2-D.m 
Result:  
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 (a)                                                        (b) 

 
Figure 56: Iterative singular value decomposition(a) Ideal magnitude response (b) 

Actual filter magnitude response 
The filter error is reasonably low at 9.88% after seven approximation stages. Overall, the 
filter requires seven 1-D FIR filter design stages as the magnitude specification is 
symmetric about the two axis. Because of the complexity of the magnitude specification, 
the designed filter does not perform as well as one might expect. This can be corrected to 
some extent using better 1-D filter design procedures such as the Parks-McClellan 
algorithm.  
 

5.4 Optimal Decomposition 

Optimal decomposition is an improvement on ISVD. The algorithm given in Box 5-2 is 

based on optimization of the 1-D magnitude vectors so that the Euclidean error is 

minimized. The error is found to be 9.68%, which is only slightly better than that of 

ISVD. 

Box 5-2: Optimal decomposition[19] 
In Eq. 5-6, the definition of the Euclidean norm is defined. In the optimal decomposition, 
the objective is to minimize the value of this error estimate to provide the best set of 
vectors that will make up the original specification matrix. 
Continuing with the constraint that magnitude vectors must all be positive, we then 
perform exponential mapping to Fi and Gi(see Eq. 5-7). 
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Eq. 5.4.1 : Magnitude exponential mapping 
The purpose of exponential transformation is so that the optimizing variables xij and yij 
are not constrained to be positive. However the condition of positive magnitude is 
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retained as all values of Fi and Gi will be positive no matter what the values of xij and yij 
are. Non-linear optimizing technique must be applied since this problem is non-linear. 
Numerous algorithms exist for non-linear optimization of several variables and any 
technique can be used to obtain the answer.  
Choosing bad starting points for optimization routines results in local minima or bad 
convergence points and it recommended that iterative singular value decomposition 
algorithm be used to provide the initial points for optimization. 
 
The algorithm can be applied to the same design problem as in Example 5-4 and the 
result is given in Example 5-5. 
 
Example 5-5: 2-D filter design example using optimal decomposition 
Design aim: A 2-D bandpass filter with normalized passband frequencies of 0.33 and 

0.66 in both dimensions(same as Example 5-4). 
Method: Optimal decomposition[19] 
Program used: ODFIR2-D.m 
Result: The error is 9.65% compared to 9.88% for ISVD algorithm after seven 

stages. The number of filter designs required is seven(same as ISVD), 
however each filter stage requires a great deal more computational effort 
than the ISVD method as it requires non-linear optimization to be 
performed on quite a large number of variables. 
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 (a)                                                  (b) 

 
Figure 5-7: Optimal decomposition(a) Ideal magnitude response(b) Actual filter 

magnitude response 

 

Due to the computational constraints, full optimization is not performed. Even then the 

optimization routine took a very long time to perform and the reason is attributed to the 

number of variables to be optimized being so large (20 to 30 variables depending on the 

order of the filter transfer function). 
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5.5 Other 2-D Filter Design Methods Based on Matrix Decomposition 

There are many other 2-D filter design methods that are based on the idea of matrix 

decomposition. So far, all the methods discussed decompose the 2-D magnitude 

specification into a set of two 1-D magnitude specifications so that the 2-D filter design 

procedure is essentially reduced to that of 1-D. It is shown that using this approach, the 

design problem is reduced significantly, but it is also shown that since the approach 

produces only an approximation to the 2-D transfer function the methods based on 

magnitude decomposition does not perform as well as direct methods. 

One notable 2-D filter design method uses matrix decomposition but is not based on 

magnitude decomposition is by Shaw and Mistra [20]. In this approach, it is assumed that 

the 2-D transfer function is already obtained using some 2-D filter design methods (such 

as direct methods of Section4).  

A 2-D transfer function can be represented by matrices as shown in Eq. 5.5.1. 
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Eq. 5.5.1: 2-D transfer function in matrix form 

In Shaw’s method, the decomposition is performed on 2-D transfer function matrices. 

The method can result in efficient filters in terms of the required elements, however it 

results in 1-D filter sections with different orders and thus does not offer the modularity 

of the other decomposition methods [20]. Other methods exist for yet more efficient filter 

design and a 2-D filter order reduction method is described in Section 6. 

5.6 Summary of Section 5 

• Matrix decomposition as a method of reducing a 2-D filter design procedure into a set 

of 1-D filter design procedures is described. 

• Singular value decomposition method is introduced with an example. 

• The iterative singular value decomposition is introduced with an example. 

• Optimal decomposition is introduced with an example. 

6. 2-D FILTER ORDER REDUCTION USING BALANCED APPROXIMATION THEORY 

Keeping the filter order to the minimum is important for several 

reasons and more so for photonic implementations as coupling 

losses of higher order filters may render the actual 

implementation impossible. To achieve lower order filters with 

good performance, the balanced approximation method used in 

control systems theory is applied to the order reduction of 2-D 

digital filters. 

6.1 Motivation for Lower Order Photonic Filters 

For an adequate filter performance, that is satisfying the rolloff factor and the passband 

ripple, the order of the filter must be appropriately chosen. In general, increasing the 

order of the filter can significantly reduce the error. However, higher filter order directly 

MECSE-1-2005: "Multi-Dimensional Photonic Signal Processing", Le Nguyen Binh



translates to extra filter components, noise, and higher attenuation which are 

unacceptable in many cases including fiber-optic implementations. It is therefore critical 

that the order of the filter remains low without sacrificing overall performance measures 

such as error response. 

The motivation for keeping filter order low is greater for fiber-optic systems than in other 

filter implementations for the reason that higher order filters cause large coupling loss 

which must be compensated by a pre-amplifier which in turn introduces noise when the 

amplification factor is large. It is generally accepted that filters with order greater than 16 

start becoming difficult to realize in practice with the current technology. However, as 

we have seen in Sections 5 and 6, 2-D filters with orders of around 30×30 are quite 

common. 

Balanced approximation, derived from control theory, is a model reduction technique for 

1-D systems. As 2-D filters usually have high orders, application of the filter order 

reduction method to 2-D filters may prove to be very rewarding especially for fiber-optic 

filters which must have low orders for feasibility. 

6.2 Description of 2-D System in State-Space Format 

As balanced approximation is originally developed for model reduction of dynamic 

systems, it uses the state-space model of digital systems. The implication is that 2-D 

systems, which we have been representing using transfer functions must now be 

represented in state-space format. 

The representation of 2-D systems in a state-space format has been a topic for research 

for a number of years and several models have been proposed [22,23]. It is noted in [12] 

that the model in [22](see Box 3-2) is most general and the model proposed in [23] can 

actually be embedded into the model in [22]. 

Although converting from 2-D transfer function description to 2-D state-space 

description involves only plug-in formulae, converting from 2-D state-space description 

to 2-D transfer function is much more involved and a novel algorithm is described in 
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Section 3.2.2.2. Using the two algorithms, the balanced approximation method can be 

applied to 2-D systems. 

6.3 Balanced Approximation Method 

Using a known 2-D filter transfer function, the balanced approximation method (BAM) 

finds the balancing transformation matrix T which ‘balances’ the system. The order 

reduction is subsequently performed by removing states that do not contribute 

substantially to the system behavior. 

The first task is to find the generalized reachability and observability gramians defined as 
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Eq. 6.3.1: Reachability and observability gramians 

Fortunately, the double integrations do not have to be solved directly and can be partially 

solved (as distinct from partial integration) using the Lyapunov approach [21]. If K11 

denotes the upper left upper block of K and K22 denotes the lower right block of K, then 

K11 and K22 can be obtained using Eq. 6.3.1. The same notations apply to the 

observability gramian, W. 
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Eq. 6.3.2: Calculations of reachability and observability gramians 

A system is said to be balanced if its gramians satisfy the following condition where σij 

are the Hankel singular value of the system. 
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Eq. 6.3.3: The condition for a balanced system 

To balance a system, the similarity transform T that will achieve the above condition 

must be found. Applying the balancing similarity transform T to the subsections of 

gramians by Eq. 6.3.4 will result in the condition in Eq. 6.3.3 being satisfied. 
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Eq. 6.3.4: Similarity transformations of gramians 

The balancing transformation T can be found by applying the algorithm given in [24]. 
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Box 6-1: Determination of the balancing transformation T [24]. 
1. Cholesky factorization of K11: The resulting lower triangular matrix is assigned Lc. 
2. Formation of Lc

TW11Lc 
3. Symmetric eigenvalue/eigenvector problem, T

c
T

c
T

111111111111 )( Λ=ULWLU . 
4. Formation of T11: T11=LcU1Λ11

-1/2 
The same procedure with appropriate subscript substitutions can be used to find T22. 
Once both T11 and T22 are found, the overall transformation matrix T can be found by 
performing an operation denoted by ⊕ in [21]. 
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Eq. 6.3.5: Overall balancing transformation 
Using the balancing matrix T, a balanced realization of the system can be found by 
similarity transformation of state-space matrices as shown in Eq. 6-6. 
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Eq. 6-6: Balanced realization of 2-D system using  
the balancing transformation matrix T. 

By observing how many significant Hankel singular values exist, one can make the 

decision on how many states should be preserved thereby determining the order r1 and r2. 

The state-space matrices can then be partitioned using the following scheme. 
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Eq. 6.3.6: Matrix partitioning of balanced system 
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A1r is a [r1×r1] matrix if r1 is greater than r2 and a r1×r2 matrix if r2 is greater than r1. On 

the other hand A2r is a r2×r1 matrix if r1 is greater than r2 and a [r2×r2 ] matrix if r2 is 

greater than r1. The dimensions of A3r and A4r are the same of that of A1r and A2r, 

respectively. Finally, the reduced system is obtained by forming new system matrices by 
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   Eq. 6.3.7: Reduced system matrices 

The resulting system which is described by the matrices Ar, br, and cr is of order of 

[r1×r2]. From the new 2-D state-space description of the reduced system, one can obtain 

the 2-D system transfer function of lower order using the algorithm given in Section 

3.2.2.2. 

6.4 Filter Order Reduction Using Balanced Approximation: An Example 

In this section, a 15×15 order bandpass filter is designed using optimal decomposition 

method, and the balanced approximation method is applied to reduce the filter order. 

Example 6-1: Application of balanced approximation method for 2-D filter order 
reduction 
Design Aim: 2-D bandpass filter with normalized passband frequency between 0.33 and 

0.66 with lowest order acceptable. 
Method Used: Optimal decomposition for filter design, and balanced approximation for 

order reduction. 
Programs Used: ODFIR2-D.m, BA.m 
Results: Using optimal decomposition method, a filter with specifications shown 

below is designed. The error is approximated at 11% after 6 stages of 
approximations. 
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(a)                                                (b) 

Figure 6.1: (a) Ideal magnitude response of the filter and (b) Actual filter response of the 
16×16 order filter 

Balanced approximation is then applied to the filter design. To apply the order reduction 
however, a new reduced order had to be chosen and the choice is made based on the 
Hankel singular values of the system plotted in Figure 6.2. Clearly, it seems reasonable to 
retain only up to 10th order in both dimensions since from 11th order onwards, the 
Hankel singular values become very small indeed. 
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Figure 6.2: Hankel singular values of the filter 

Choosing the new order of the filter as 10×10, the BAM is applied with the following 
excellent results. 
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(a)                                  (b) 

Figure 6.3: Reduced order(10×10) filter (a) Ideal characteristic of the filter (b) Actual 
characteristic of the filter 

As the plots of magnitude characteristic shows, there is hardly any difference between the 
original design and the reduced order design. The error estimate of 11.46% compared to 
11% of the original 15×15 order design confirms this point and shows that balanced 
approximation indeed produces filters of significantly lower order with very little 
sacrifice in performance. 

 

The result of application of BAM to a 2-D filter transfer function can be summarized as 

follows: 

1. Reduced order filter.  

2. Usually IIR structure. 

3. If the original filter has a separable denominator, then the reduced filter also has a 

separable denominator[21] allowing a separable implementation. 

4. Little sacrifice in performance(magnitude error and phase linearity). The phase 

remains nearly linear for the resulting IIR structure as well which is a feature difficult 

to achieve with other 2-D IIR filter design methods. The proof of the linearity is 

given in [21]. 
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All in all, the BAM provides an excellent method of reducing filter order to a realizable 

level without a large deterioration in performance and should therefore be given a 

consideration before implementation of 2-D filters. 

6.5 Summary of Section 6 

• The problem with ordinary 2-D filter design methods when implementing fiber optic 

filters is stated as the high order of the designed filters. 

• A method of the filter order reduction called ‘Balanced Approximation’ is presented. 

• An example of application of the balanced approximation to 2-D filter order 

reduction is given. 

7. FIBER-OPTIC DELAY LINE FILTERS 

As described in Section 1.3, fiber optic delay line architecture is 

an alternative architecture to spatial and temporal architecture. 

The fiber optic delay line architecture used in this report to 

implement 2-D filters is described in further detail with a 

mathematical analysis. 

7.1 Coherent and Incoherent Operation of Photonic Filters 

When the advances in laser technology first made guided wave photonic systems 

possible, most pioneering photonic systems used multi-mode propagation of light as the 

main mode of signal transmission. However with the advent of lasers with narrower line-

widths, it has become possible to operate lighwave systems in single mode resulting in 

greater bandwidth-distance product. Single mode systems are becoming increasingly 

popular and the trend towards single mode systems is set to continue. 

Aside from the mode of propagation, another factor that determines the characteristic of a 

lightwave system is whether system is operating in coherent or in incoherent modes. The 

differences between the two operations can be summarized as follows: in a coherent 
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system, the light source can be regarded as operating in a single wavelength (although in 

reality, no matter how small the linewidth is, the emitted lightwave is certain to contain 

more than one wavelength component). The use of coherent light as the signal carrier 

simply means that the phase as well as the amplitude of the lightwaves must be regarded 

as a part of the information being carried by the lightwave. In incoherent systems, the 

information is carried only by the intensity of the lightwave. One may therefore consider 

incoherent systems as the amplitude modulated system with intensity modulation instead 

of amplitude modulation. It is obvious that negative range cannot be expressed by 

intensity-based incoherent systems unless one biases the light intensity to a predefined 

level. The receiver can then detect negative range by comparing the received intensity 

value to the predefined level. 

The differences between coherent systems and incoherent systems are shown in Table 7-

1. For signal processing purposes, incoherent operation implies that the modulating 

frequency of the source must be much lower than the photonic frequency implying that 

the full bandwidth of the laser cannot be used. Coherent operation on the other hand 

allows utilization of the full bandwidth of the system resulting in greater processing 

speed. However, because coherent systems tend to be more vulnerable to environmental 

effects such as phase jitter, some shielding must be used to reduce the adverse effects to a 

negligible level [3]. Another important advantage coherent systems have over incoherent 

systems is the flexibility in system design. Incoherent systems fall into the category of so 

called positive systems and have restrictions on quantities such as number and positions 

of system poles and zeros [9]. In spite of such constraints, most of the research works 

reported so far on fiber-optic delay line signal processing have been using incoherent 

systems [3-7]. The reasons for avoiding coherent systems have been that ‘coherent 

systems are more difficult to implement in practice and are usually more complicated 

than incoherent systems because of the stringent requirements on the stability of the 

source and photonic delay paths’ [4]. In future however, it is likely that lasers capable of 

coherent operation over longer distances as well as better techniques for controlling the 

delay paths will be available. Coherent systems thus may yet represent the possibility for 

full bandwidth all-photonic processing. 
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 COHERENT SYSTEM INCOHERENT SYSTEM 
Information carrier amplitude, phase intensity 

Bandwidth very wide wide 
Required linewidth of the 

source 
very narrow narrow 

Negative range amplitude and phase can 
combine to express a negative 

value 

predetermined bias value is 
necessary 

Table 7-1: Differences between coherent and incoherent lightwave system 

7.2 Using Optical Fibers to Realize Delayed Line Filter 

Three main components are required in most forms of discrete-time filters: delay, 

coefficient, and summer/splitter. To illustrate how the components are realized in 

photonic domain, discrete-time tab filter shown in Figure 7-1 is used as an example. As 

the signal flow diagram for a discrete time tab filter is general, the photonic components 

used to realize a discrete-time tab-filter can be used in other filter structures. 

  

z-1

h0
Output Input 

h0

h0

h0

z-1

z-1

 

Figure 7.1: Signal flow diagram of discrete-time tab filter, the unit delay is the traveling 

time of lightwaves over a distance equivalent to the unit sampling time . The coefficients 

hs are the transmittances over the specific path. 

7.2.1 Photonic Realization of Delay 

In fiber-optic delay line filters, photonic fibers are used as delay elements as signal 

propagation time can be controlled using the length of the fiber. The transfer function of 

optical fiber, ignoring the fiber signal dispersion and the fiber intensity loss, can be 

expressed mathematically by Eq. 7-1. 
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LjeH βω −=)(    Eq. 7.2.1: Transfer function of the fiber optic delay line 

where L is the length of the delay lines, β is the propagation constant of the guided 

fundamental mode. The propagation constant β is defined by β = ωneff/c where neff is the 

effective refractive index of the guided mode in the fiber or optical planar channel 

waveguide, ω is the operating optical frequency in radians, and c is the speed of light. 

The inverse of the time delay T is  neff f/c and equals to the sampling frequency of the 

filter. Choosing a reference length of the optical delay as Ld, if L is a integer multiple of 

Ld the transfer function can be expressed as shown in Eq. 7.2.2. 
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Eq. 7.2.2 (a) Transfer function of fiber optic delay line with multiple delays (b) z-

transform parameter 

Upon comparing Eq. 7.2.2(a) and Eq. 7.2.2(b), it can be observed that the two equations 

are very similar and in fact, if ωT in Eq. 7.2.2(b) is replaced by (2πf)(neff Ld/c), then the 

two equations are identical. It is therefore clear that fiber can act as a delay whose length 

is controlled by neff and L. 

Optical fiber has several properties which enable it to be an ideal delay line medium: 

flexibility which enables a relatively compact implementation of the system, the accuracy 

of time interval between tabs that can be produced, insensitivity to electromagnetic 

interference which is useful when used in electro-magnetic environments - quite often the 

case with signal processing equipment. 

7.2.2 Photonic Realization of Tab Coefficients 

General form of a feed forward transfer function in z-domain can be expressed by  

 Eq. 7.2.3. In the previous section, it is shown that fiber can implement z-d part of 

the transfer function. 

MECSE-1-2005: "Multi-Dimensional Photonic Signal Processing", Le Nguyen Binh



∑
=

−=
n

d

d
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0
)(   Eq. 7.2.3: General form of a discrete-time transfer function 

in z-domain(with no feedback) 

There are several ways to realize the coefficients magnitude |hd| such as optical 

amplifiers /attenuators[6](earlier methods of achieving filter coefficients included 

reflectors, radiation due to bending, and evanescent coupling by polishing the cladding 

down very close to the fiber core [8]). However the negative sign can be difficult to 

realize as it represents a negative intensity in an incoherent system! The inability to 

represent negative quantities effectively is a major limitation of incoherent systems. On 

coherent systems a multiplication by a negative coefficient represents a phase shift of 

180°. 

7.2.3 Photonic Realization of Summer/Splitter 

In photonic domain, summing/splitting of signals can be performed by optical couplers 

(see Figure 7.2). 
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Eq. 7.2.4: 2×2 Optical coupler transfer matrix 

Splitting of signal can be performed by using just one of the input terminals (E3, E4) and 

both output terminals (E1, E2) - see Figure 7.3(a). Summing can be achieved by using just 

one output signal port and both input ports - see Figure 7.3(b). 

 
E1 

E2 E4 

E3 
√1-k1 

√1-k2 
-j√k1 
-j√k2 

 

Figure 7.2: Schematic diagram of an optical coupler 
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(a)                                                              (b) 

Figure 7.3:(a) Optical coupler as a splitter (b) Optical coupler as a summer 

When using an optical coupler as a summer/splitter, there are two undesirable properties 

that must be taken into account. Firstly, as can be seen from the transfer matrix, when 

photonic signal goes through a coupler the signal amplitude (and therefore intensity) is 

attenuated by the coupling factor of the optical coupler which for a half intensity splitter 

is 1/√2. A photonic filter is likely to have cascaded stages of optical couplers and the 

combined coupling coefficients cause quite substantial attenuation of the original input. 

Optical amplifiers are therefore usually necessary to compensate for the amplitude 

attenuation [6]. Second problem arising from the use of optical couplers as 

splitter/summer is the phase shift of -90° associated with cross-coupling of photonic 

signals. The phase shift is not an issue for concern in an intensity-based system 

(incoherent system), however it can cause difficulty in coherent systems, especially when 

coupler is being used as a summer as the signals that are being added must be in the same 

phase at the output of the coupler. To illustrate this problem, consider adding two signals 

E1 and E2 that are in phase before they enter the coupler (  Eq. 7.2.5). At the 

output of the coupler, only one output is cross-coupled and therefore phase shifted 

whereas the other output retains the phase of the input signal. The added signal is 

therefore an inaccurate representation of the summing operation. 
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  Eq. 7.2.5: Optical coupler as a summer 

However, the phase shifting property of couplers, if manipulated well can act be used as 

perfect phase-shifters necessary in implementing negative coefficient taps. It is therefore 

conceivable that with the right choice of input and output terminals, a coherent signal 
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processing system that represents negativity without biasing (as in incoherent systems) is 

feasible. 

7.3 Graphical Representation of Photonic Circuits 

An photonic circuit can be translated directly into a signal flow diagram (SFG) as the 

elements in an photonic circuit and the elements in its SFG have a direct one-to-one 

correspondence. To effectively utilize the SFG representation in analyzing photonic 

circuits, the well known Mason’s rule4 of analyzing the SFGs is applied to the photonic 

circuits [9]. The key to the application of the rule is the planar SFG representation of 

optical coupler as shown in Figure 7.4 [9]. 

 -j√k2 
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Figure 7.4: Graphical representation of optical coupler 

Photonic components other than couplers such as fiber delay lines and 

amplifier/attenuators have a straightforward representation in the SFG. Using the above 

representation for optical couplers, photonic circuits can be analyzed systematically. The 

result is a very powerful technique that enables a systematic mathematical analysis of 

photonic lumped circuits. Using this technique, the z-transfer function of a system from 

any one node to another (instead of just from one preset input node to a preset output 

node) can be calculated allowing the system designer more degrees of freedom in 

designing and using photonic circuits. Once the transfer function in z-domain has been 

obtained, as z-transform theory is very well developed one can simply apply the 

conventional analysis to the photonic circuits. 

                                                           
4 Mason’s rule can be found in many digital signal processing textbooks. The rule is applied without modifications to 

SFG representations of optical circuits. 
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Alternative to this method of analyzing photonic circuit is the matrix-method which 

attempts to analyze photonic circuit by direct manipulation of the coupler transfer matrix 

(Eq. 7.2.4). The disadvantage of such approach is that when the photonic circuit consists 

of more than a few photonic elements, it becomes extremely difficult to recognize what 

effect each element is having on the overall function of the system. Graphical approach 

allows direct manipulation of the photonic circuit as the correlation between a SFG and 

the photonic circuit it represents is very high. 

The graphical method is best suited to analyzing a lumped photonic system, most likely 

to confirm the operations of an photonic circuit or to find new functions of an photonic 

circuit configuration. For further discussion on the uses of the graphical method, see 

Section 8.10. 

Example 7-1: Graphical method of analysis of double-coupler feedback photonic 
resonator[9] 

Introduction: Double coupler feedback photonic resonator (DCFBOR) is a configuration 
which results in one optical energy storage element through feedback and 
one interferometer through different path lengths in the feed forward path. 
The resulting transfer function contains one pole and one zero at the 
origin, and therefore the configuration can be used to realize all pole IIR 
filters. 

Method: Graphical technique for photonic circuit analysis [9] 
Result:  The photonic circuit of double coupler feedback optical resonator 

is shown in Figure 7-5. The SFG of DCFBOR is shown in Figure 7.6. 
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Figure 7.5: Schematic diagram of DCFBOR 
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Figure 7.6: Signal flow diagram representation of DCFBOR 
 

The details of application of Mason’s rule of determining the signal flow diagram transfer 
functions can be found in [36]. The resulting transfer function, as expected has one zero 
at the origin and one pole at a location in z-plane determined by the circuit parameters. 
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Eq. 7.3.1: DCFBOR transfer function as determined by the graphical technique 

 

In conclusion, the graphical technique presents a previously unavailable systematic 

method of analysing photonic circuits. The greatest potential will be realized when the 

technique is implemented in a software form as the technique can be time-consuming to 

apply manually if there are more than two feedback loops. 

7.4 Summary of Section 7 

• The differences between coherent and incoherent operation of lightwave systems are 

described. 

• The architecture and components of delayed line filters are described. 

• Table 7-2 shows components that make up a photonic digital filter with 

corresponding element in a SFG. 

Photonic implementation Signal flow diagram element 
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unit length fiber delay line 
optical amplifier, optical attenuator, etc. multiplicative coefficient 

coupler summing/splitting point 

Table 7-2: Comparison of photonic and signal flow diagram elements 

• A method of representing photonic circuits in signal flow diagram is introduced and 

its advantages are outlined. It is stated that using Mason’s rule, the transfer function 

of an photonic circuit can be obtained directly from signal flow diagrams. An 

example of application of the graphical method is also given. 

8. PHOTONIC IMPLEMENTATION OF 2-D FILTERS 

In Section 7, the fiber-optic signal processing technique is 

introduced. In this section, various structures of fiber-optic signal 

processing systems, some of them novel, are shown. Using these 

structures along with the 2-D filter design methods given in the 

Sections 45 and 6, 2-D filters can be implemented in photonic 

domain. 

8.1 Photonic Filter Structures 

In Sections 45 and 6, various methods of developing 2-D transfer function of the filter 

with desired characteristics have been developed. To implement a 2-D transfer function 

in photonic domain, as with other implementations of digital filtering systems, one must 

consider what kind of structure the fiber-optic filter should have in order to reduce error 

and at the same time, be economical. 

Many of the structures used here are similar to 1-D fiber-optic filter structures and simply 

require cascading of the structures to construct a 2-D fiber-optic filter. However, for 

transfer functions not derived using matrix decomposition methods, novel structures must 

be devised to accommodate the requirements of non-separable transfer functions. 

Possible filter structures include binary tree structure, direct structure, lattice structure, 

parallel structure, and transversal structure all of which are described in the following 

sections. 
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8.2 Coherent System 

The filters implemented in this report assume coherent operation of the laser. As 

explained in Section 7.1, this implies that the phase of incoming signal cannot be 

discarded and the constructive and destructive interference of signals from different paths 

combining must be taken into account when designing the filter. Although the restriction 

is somewhat harsh, it is noted in Section 7 that there are important advantages of using 

coherent operation over incoherent operation. Furthermore, unless specifically noted 

otherwise, all filters implement 2-D FIR structures. The implementation methods for IIR 

filters are discussed in Section 8.10 

8.3 2-D Direct Structure Filter 

We first consider a filter structure that is suited to direct design methods of Section 4, i.e. 

no matrix decomposition. None of binary tree structure, transversal filter structure, or 

other 1-D structures which are introduced later this section is suitable for implementation 

of 2-D filters designed without using matrix decomposition. 2-D frequency sampling 

method for example does not generate a set of separable transfer functions and therefore 

cannot be implemented using 1-D structures. In such cases, two options exist for 

photonic implementation: (i) Break down the 2-D transfer function into a set of 1-D 

transfer functions by decomposing the filter transfer function using singular value 

decomposition and (ii) Use a 2-D direct filter structure. 

2-D direct structure filter is derived from the signal flow diagram shown Figure 3.4 in 

Section 3.3.2. Translating the signal flow diagram into photonic domain is a relatively 

easy task in this case and the result is shown in Figure 8.1. 
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Figure 8.1: Fiber/integrated optic implementation of direct structure 

In Figure 8.1, each box labeled Amn represents a coefficient module which contains a one 

photonic attenuator (or some form of attenuation mechanism) and possibly a phase 

modulator. The coupler ports are arranged so that the number of cross coupling a signal 

path contains is four for all signal paths therefore ensuring that the phase of the signal 

entering each coefficient module is consistent over the whole network. The negative 

coefficients can then be realized by including a 180° phase shifter in each negative 

coefficient module.  

It should be noted that there are two different kinds of delays. The implementation of the 

delays is quite simple if we are considering signal input of the form described in Figure 

2.1(c). For the 2-D sequence of Figure 2.1(b), z1
-1 can be implemented as just one unit 

delay, and z2
-1 can be implemented as 7 unit delays as this is the number elements in a 

row of the signal. 

The quantities of photonic elements required for 2-D direct photonic implementation are 

given by the following Eq.s. 
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where C2-D = number of optical couplers required; NPM2-D = number of optical phase 

modulators required; NOAt2-D = number of optical attenuators required; N1 = filter order in 

n1 dimension; N2 = filter order in n2 dimension 

8.4 2-D Separable Structure Filter 

In the previous section, it is made clear that matrix decomposition methods of Section 5 

can be implemented in the photonic domain by cascading of 1-D fiber-optic structures 

since matrix decomposition methods basically generate sets of 1-D transfer functions. 

The 1-D structures however must be combined in a way so that the filter performs 2-D 

signal processing operation as intended. Essentially, the combined structure must 

implement a product of sum of 1-D transfer functions. Shown in Figure 8.2 is a fiber-

optic structure that implements the required function. 
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Figure 8.2: 2-D fiber-optic filter structure 

Any 1-D filter implementation can be substituted for the filter banks as long as it is 

modular (the signal in and the signal out must have the same zero reference point). One 

can therefore regard the above structure as the general structure for a separable 2-D 

photonic filter. Specifically, Figure 8.2 implements a 2-D filter generated by matrix 
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decomposition with eight significant singular values. The order of the resultant 2-D filter 

is defined by the order of 1-D filters in the filter banks. Even though the diagram does not 

make any distinctions, it should be kept in mind that the length of the delays z1
-1 and z2

-1 

are also different for the two filter banks in each parallel branch. 

In the following sections, a number of 1-D sub-structures that can be used to implement 

the filter banks are described. It is up to the filter designer to choose which structure is 

most suitable for the particular application as any one of the structures can be substituted 

into the filter banks. 

The number of photonic elements required for the separable 2-D structure is given by 
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       Eq. 8.4.1 

where C = number of optical couplers required; NPM = number of optical phase 

modulators required(maximum); NOA = number of optical amplifiers required(maximum); 

Ns = number of parallel stages included 

8.5 Binary Tree Filter 

A 1-D FIR filter transfer function can be implemented in fiber-optic format by arranging 

filter elements in binary tree structure as shown in Figure 8.3. The particular filter shown 

in the figure is a 1-D 3rd order FIR filter. The extensions to higher order filters are 

obvious. 
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Figure 8.3: Binary tree structure [1] 

The transfer function of the filter implemented with the structure can be expressed as 
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Eq. 8.5.2: Transfer function of the binary tree structure filter[1] 

Because the system is not intensity based, the signal is assumed to have the form 
( )εϕω ++ )(ttj

o
oeE  which includes the optical phase φ. Negative coefficients of the transfer 

function can therefore be achieved by shifting the phase of the signal by 180° through 

phase modulators [1]. With appropriate manipulation of the optical coupler characteristic 

as a perfect -90° phase shifter, the use of optical modulators to achieve negative 

coefficients can be reduced or even completely eliminated as with transversal filter 

structure shown in the next section.  
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The advantage of the binary structure is that the number of 3 dB splitting stages the 

signal must travel through is the minimum achievable. The loss due to splitting is thus 

minimum and the effect of noise due to splitting is also minimum. The structure is used 

in [1] to implement a fiber-optic integrator in which the input and output terminals of 

couplers are selected so that the sign alternation in the numerator that is the characteristic 

of Newton’s family of digital integrators is achieved without phase modulators. However, 

this (alternating sign) is not true for an arbitrary filter transfer function and therefore most 

filter transfer functions would necessitate the use of optical phase modulators (OPMs) as 

shown in Figure 8.3. 

The number of photonic elements required for the binary tree structure is given by  

1

2
2log

0

1

=

=

=

= ∑
=

+

BT

BT

BT

A

At

PM

N

i

i
BT

N

NN

NN

C

       Eq. 8.5.3 

where CBT = number of optical couplers required; NPMBT = number of optical phase 

modulators required(maximum); NAtBT = number of optical attenuators required; NABT = 

number of optical amplifiers required(minimum) and N = order of the 1-D filter sections 

8.6 Photonic Transversal Filter 

In the previous section, it is shown that the binary tree structure requires phase 

modulators except in cases when the signs are alternating or when there is equal number 

of positive coefficients as negative coefficients in the transfer function. Such cases are 

rare, and in most cases phase modulators will be needed to achieve the negativity. In this 

section, a structure that does not require any phase modulators is proposed. This 

structure, based on the transversal filter structure in [5](shown in Figure 8.4(a)) achieves 

180° phase shift required by negative coefficients through appropriate arrangement of 

coupler ports. The signal paths for positive coefficients contain four cross couplings 

resulting in -j×-j×-j×-j = 1, i.e. no phase shift, and all signal paths for negative 
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coefficients contain two cross couplings resulting in -j×-j = -1, i.e. 180° phase shift. 

Shown in Figure 8-4(b) is the proposed transversal filter structure that does not require 

phase modulators to achieve negative coefficients. The phase of the signal at various 

points of the filter is shown in gray scale. 

The proposed structure is particularly suited to the transfer functions generated by matrix 

decomposition as it can implement a 1-D FIR transfer function with very little 

modifications(needed for the coupling attenuations) to its filter coefficients. How the 

additional sections can be accommodated to form a 2-D filter is shown later in this 

section. 
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Figure 8.4 (a) The original transversal structure [5] and (b) The proposed structure 
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The advantages of the proposed filter structure over the simple transversal filter structure 

in [5] are threefold. First, as mentioned previously, is the fact that no phase modulators 

are required to achieve negative coefficient. The second advantage is that no signal 

biasing or differential detection is required. The implication of the second advantage is 

that the filter structure is modular and can therefore be connected in parallel or in series 

without any modification to the filter module. Another advantage of the proposed 

structure is that the signal goes through less number of couplers than the implementation 

of [5]. This property can be observed if one considers the fact that the signal only goes 

through in average N/2 couplers for the proposed structure(since the coefficients are split 

into two groups) whereas for the traditional transversal filter the number of couplers the 

signal must travel through is always N, where N is the number of coefficients of the filter 

transfer function which may or may not be the same as the order of the filter. 

The proposed structure can also be used for adaptive filtering as only the coefficients of 

the optical amplifier/attenuator need to be changed to modify the filtering operation. 

However for adaptive operation, the filter coefficients that are zero and therefore not 

included in the original structure may have to be included in case the adapting algorithm 

changes them to non-zero values. The situation is slightly disadvantageous for the 

proposed structure compared to the simple transversal structure of [5], because the 

number of positive and negative coefficients (N-ve and N+ve) of an Nth order filter can 

range from 0 to N+1 and both sets of coefficients need to be fully implemented. 

Fortunately the situation is not as bad as one might expect. At first, it appears that the 

number of optical attenuators (OAs) needed is 2N since both negative and positive 

sections should implement the full order of the filter transfer function. For the proposed 

structure, it can be shown that the number of OAs required is approximately (N+1)×1.5 

(N+1 components are required for the simple transversal filter structure of [5] for 

adaptive operation). The reason for requiring only (N+1)×1.5 instead of 2N can be 

explained as follows. 

Assume that we can exchange the input connections to two parallel sections using optical 

switches so that the signs of the two parallel sections can be reversed. First consider the 
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case where the number of positive coefficients and negative coefficients of the filter 

transform function are exactly the same,i.e., N+ve=N-ve=(N+1)/2. Clearly (N+1)/2 OAs 

are needed for each parallel subsection and therefore total of N+1 OAs are required. Now 

consider the case where one sign is completely dominant over the other, i.e. N+ve=N+1 

and N-ve=0, or N-ve=N +1 and N+ve=0. In this case, N+1 OAs are necessary in at least one 

of the parallel subsections even though the other subsection does not need any. To 

accomodate for both situations with one filter structure, it is clear that (N+1) + (N+1)/2 

= 1.5(N+1) OAs are necessary. The result for optical attenuators can be extended to 

phase modulators and couplers with a few simple modifications. 

In the case where adaptive filtering is not required, total number of components required 

is minimized by the use of the proposed structure. For 1-D digital filtering purposes also, 

this structure is economical, modular and easy to implement. Example 8-1 is a simple 

exemplar of a fiber-optic filter realized from a transfer function using the parallel 

structure. 

Example 8-1: Photonic filter implementation using the proposed transversal structure 
Design Aim: A sample implementation of a simple transfer function 
Method: The proposed transversal structure. Fiber losses and other non-linear 

effects are ignored. 
Results: 

6543211 5.06.04.02.03.02.01)( −−−−−−− −++−−+= zzzzzzzH  

Eq. 8.6.1: Filter transfer function to be realized using the proposed transversal structure 
The first step is to divide the transfer function into two parts, namely the positive 
coefficients and the negative coefficients, denoted by k+ and k-. It is assumed that all the 
coefficients are realized using optical attenuators and not amplifiers(optical attenuator is 
known to produce less noise than does the optical amplifier). 
An observation of the filter structure shown previously in Figure 8-4 will reveal that all 
streams of lightwaves in each parallel section pass through the same number of couplers 
and therefore suffers the same attenuation from coupling. In this example, the positive 
coefficients suffer (√2)7 attenuation whereas the negative coefficients suffer a (√2)6 
attenuation. Optical preamplifier gain is therefore set at (√2)7 and the negative coefficient 
attenuators are set at h-n÷√2 where h-n denotes the negative coefficient values. This factor 
of √2 compensates for the effect of the extra coupler positive coefficient signals go 
through. Optical preamplifier is set at (√2)k where k is the greater of k+ and k- to 
compensate for the coupling losses. 

MECSE-1-2005: "Multi-Dimensional Photonic Signal Processing", Le Nguyen Binh



 
 
 

 
 

 
 

0.2121 

 
 

0.1414 

Coherent 
lightwave 

input

Filter 
output 

z-1 

 
 

0.3536 

z-3 z-2 

 
 

0.2000 

z-1 

 
 

0.4000 

z-3 

 
 

0.4000 

z-1 

 
11.3137 

   z-1  Optical attenuator  Optical amplifier  Optical coupler  Unit delay line  
 

Figure 8-5: Fiber optic implementation of Eq. 8-2 using the proposed transversal filter 
structure 

Because the binary tree splitting stages of Figure 8.3 add further attenuation to the 

lightwave when the transversal structure is incorporated into a 2-D system, the filter 

amplifier and the attenuator settings must be adjusted accordingly. 

The number of optical elements required for the transversal structure is given by  

1

0
22

=
=
=
+=

ATF

AtTF

PMTF

TF

N
NN

N
NC

        Eq. 8.6.2 

where CTF = number of optical couplers required; NPMTF = number of optical phase 

modulators required; NAtTF = number of optical attenuators required; NATF = number of 

optical amplifiers required(minimum) and N = order of the 1-D filter sections 

8.7 1-D Direct Structure Photonic Filter 

1-D direct structure provides the classic alternative to the binary tree structure and 

transversal filter structure for implementation of 1-D filters. Unlike the structures 

mentioned, direct structure can also implement IIR filters very easily. The direct structure 
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signal flow diagrams can be found in most signal processing books and is quite 

straightforward. However, photonic implementation of the direct structure has not been 

developed as yet and this section shows an implementation of the structure using fiber-

optic elements. 
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The transfer function shown in Eq. 8.7.1 can be represented in signal flow diagram 

format as shown in Figure 8-6 and the photonic implementation is shown in Figure 8.5. 
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Figure 8.5: Signal flow diagram of 1-D direct structure 
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Figure 8.6: Photonic implementation of direct 1-D structure 

As with the 2-D direct structure, each signal path contains four cross-couplings and 

therefore suffers no overall phase shift (-j×-j×-j×-j=1). The boxes in the horizontal 

branches represent coefficient module identical to that in 2-D direct structure and the 

boxes in the vertical branches represent the delay elements. The structure is optimal in 

the sense that the number of delay elements is minimal and can be used to implement 1-D 

IIR functions in the photonic domain. The couplers used in the middle section of the 

implementation represent either 3×3 couplers or a cascade arrangement of two 2×2 

couplers shown in Figure 8.7. 

 

 

Figure 8.7: An arrangement of two 2×2 couplers to form a 3×3 coupler 

The number of photonic elements required for the direct structure is given by 
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where CDF = number of optical couplers required; NPMDF = number of optical phase 

modulators required; NAtDF = number of optical attenuators required; NADF = number of 

optical amplifiers required; Nnum = order of the 1-D filter numerator and Nden = order of 

the 1-D filter section denominator 

8.8 Parallel Structure Filters 

Parallel structure is a simple variation on the theme on the direct structure. This structure 

is slightly different from the direct structure in that signals pass through less number of 

couplers and therefore the signals are not attenuated as much.  

Basically the structure can be thought of as a parallel arrangement of 2nd order direct 

structures. The signals are split into several branches at the beginning and after the 

signals have traveled through the parallel sub-structures, they are merged back into one 

signal path. To implement the parallel structure, the filter transfer function must be 

factorized into a sum of several sub-transfer functions. If each sub-transfer function is in 

the form of 2nd order substructure, it is then possible to turn the sub-transfer function into 

signal flow diagram form which in turn can be realized in the optical domain. 

Example 8-2: Filter design using parallel structure filter 

Design Aim:  A 1-D low-pass filter of 7th order with normalized cut-off frequency at 0.3 

Method: Parallel factorization 

Program used: PARALLEL.m 

Results: The transfer function designed using Chebychev approximation routine in 
MATLAB simulation package is decomposed as shown below in signal flow diagram 
format. It is found that the performance of the two implementations are nearly identical 
(see Figure 8-9). 
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Figure 8-9: Parallel structure example signal flow diagram (a) Direct structure (b) 
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Figure 8-10: Frequency response of direct and parallel structures 

 

For photonic implementations of parallel structures, the splitting of signal at the 

beginning of the structure can be performed using a binary tree of couplers in which case 

the amplitude and the phase change caused by cross-coupling must be considered. The 

task is very similar to that performed for binary filter structure. Essentially, the phase 

changes can be corrected by including a 180°shift every second parallel branch, and 
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amplitude compensation is equal to 2 raised to log2P where P is the number of parallel 

stages (which must be a power of 2). 

The performance of the parallel structure is similar to that of the direct structure as can be 

seen in Figure 8-10, and the number of delays as well as the number of 

amplifiers/attenuators required are also the same. However, the number of 

summer/splitters in parallel structure is greatly increased and in Section 9.3.3.2, it will be 

shown that the number of optical couplers needed for the implementation of parallel 

structure is also very much larger than that required for other 1-D structures. 

The number of photonic elements required for the parallel structure is given by 
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     Eq. 8.8.1 

where CPF = number of optical couplers required; NPMPF = number of optical phase 

modulators required; NAtPF = number of optical attenuators required; NAPF = number of 

optical amplifiers required (minimum); Nnum = order of the 1-D filter numerator and Nden 

= order of the 1-D filter section denominator 

8.9 Other 1-D Filter Structures 

Several other filter structures exist for filter realization in optical domain. Lattice 

form(see Figure 8-11) is a structure particularly suited to incoherent systems since each 

section of the signal flow diagram is identical to the optical coupler signal flow diagram 

shown in Figure 7.3(a). The coefficients k can be implemented using optical 

amplifier/attenuators. The lattice structure is not suitable for coherent signal processing 

as coherent systems must take phase into account and since the lattice structure assumes 
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that the cross coupling does not cause any phase shift, it will be inefficient and difficult 

to implement coherent systems using the lattice structure. 
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Figure 8.8: Lattice form signal flow diagram 

8.10 Realization of Poles 

In discussing feed forward structures such as the binary tree structure or the direct 

structure, the realization of the denominator part of filter transfer functions are ignored. 

This can be justified in the case of finite impulse response filters (FIR) where the 

denominator is simply 1. In cases of IIR filters, the denominator must be incorporated 

into the system as in 1-D direct structure. An alternative is to form a pure pole filter by 

using a feed forward structure in a feedback loop as shown in Figure 8.9. 

  
1/K 

 
f(z) 

 

Figure 8.9: Denominator realization using feed forward structure 

Assuming that the denominator of transfer function can be written as 

)()( zfKzp +=      Eq. 8.10.1 

where f(z) has no constant terms, applying the feedback structure results in the following 

transfer function: 
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It is therefore possible to use the feed forward structure such as transversal structure 

without modifications in feedback branch to form the denominator of an IIR filter 

transfer function. The overall filter structure incorporating numerator q(z) and 

denominator K+f(z) is shown in Figure 8.10. 
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-

 

Figure 8.10: IIR filter structure using FIR subsections 

Note that q(z) and f(z) can be replaced by q(z1, z2) and f(z1, z2). The structure in Figure 

8.10 can therefore be used to implement a subsection of separable filters of Section 5 or a 

complete 2-D direct filter implementation of Section 4. Example 8-3 implements a case 

of the former. 

Example 8-3: A 2-D recursive filter subsection realization 

Design Aim: The recursive transfer function given in Eq. 8-3. 

6543
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Eq. 8.10.3: A 2-D filter subsection transfer function 

The filter subsection can be implemented in photonic domain as shown in Figure 8.11. 
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Figure 8.11: A 1-D IIR filter subsection example 

Finally, when the SFG is ready, the graphical technique introduced in Section 7.3 can be 

used to check the validity of the design. However, applying the technique by hand to 

photonic circuits shown in this section would be time-consuming and error prone as there 

is too many photonic elements to consider. In fact, applying any graphical technique by 

hand to the photonic circuits in this section would be impractical. Due to the 

impracticality of performing a graphical analysis by hand, the graphical analysis of the 

photonic circuits is omitted here. Readers are referred to the recent report [26] 

8.11 Summary of Section 8 

• The significance of using coherent systems for PSP stated. 

• 2-D direct structure illustrated. 

• Various matrix decomposition realizations using 1-D filter structures shown. 

• Realizations of IIR filters using FIR filter sections shown. 
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9. DISCUSSIONS AND ANALYSIS 

9.1 Summary of the Report 

• The issues in multidimensional signal processing are introduced (Section 2) 

• Mathematical models for 2-D filters are given (Section 3). 

• Alternative streams of 2-D filter design methods are introduced and implemented 

(Sections 4 and 5). 

• A 2-D filter order reduction method is implemented (Section 6). 

• The issues in 2-D signal processing using fiber-optic techniques are discussed 

(Section 7). 

• Structures for photonic implementation of 2-D filters are designed or introduced 

(Section 8). 

9.2 2-D Photonic Filter Design Flowchart 

In designing and implementing a 2-D filter, several design decisions must be made. The 

following flowchart illustrates the possible paths that may be taken when designing and 

implementing a 2-D filter in photonic domain. Tables in the chart show various design 

methods any one of which may be substituted for another within the same table. For 

example for separable design methods path (the branch on the right side of the 

flowchart), any one of single stage SVD, multistage SVD, iterative SVD, or OD may be 

used to calculate the appropriate 2-D transfer function. The numbers inside brackets 

show the relevant section which to be referred to. 
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1. 1D FIR and IIR filter discussion can be found 
in many signal processing textbooks O

Obviously, if a design result is not satisfactory, some of the procedures must be repeated 
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to find a better solution. The iteration paths are not shown in the flowchart as they are 

reasonably obvious. 

9.3 Examples of Photonic 2-D PSP Implementation 

In this section, 2-D filter implementations of the same frequency specification are 

performed from scratch first using a matrix decomposition method, and then a direct 

method. The design methods used in the example are by no means ‘ideal’. As shown in 

the flowchart show in the previous page, there are many possible paths and ultimately, 

the choices lie with the filter designer. 

9.3.1 The Specification 

The filter to be designed is a low-pass filter with normalized spatial cut off frequency of 

0.7 in x and y directions (see Figure 9.1). The overall filter magnitude response error 

defined by Eq. 4.2.1 is to be less than 10%. The 2-D signal is transmitted coherently 

through an optical fiber medium using linear sequencing of a 256×256 pixel frame 

starting from x=0 and y=0. The frequency response of the filter is to be circularly 

symmetric. The order of the filter should be sufficiently low to enable it to be 

implemented in photonic domain. The phase response of the filter should be linear. The 

filter is intended to be a noise remover as most noise components are in the high 

frequency band. 

0.6

0.8

1
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Figure 9.1: Magnitude specification 

9.3.2 Choice of a Design Methodology 

As the first decision to be made, a choice between direct design methods and separable 

design methods must be made. The following table shows the differences between 

separable and direct design methods. 

Property Direct design methods Separable design methods 
Number of parallel stages 1 ≥ 1 

Filter structure FIR or IIR FIR or IIR 
Filter design procedure One 2-D filter design Many 1-D filter designs 

Coherent processing Yes Yes 
Performance Depends on the order of the filter 

and the 2-D filter design method 
Depends on number of additional 
stages and the 1-D filter design 

method 
Fiber-optic 

implementation 
Direct structure only Binary, parallel, transversal, direct 

Table 9-1: Comparison of direct structure and separable structure 

Although the two methodologies result in very different designs, there are no apparent 

advantages to be gained from preferring one structure over another. There are multitude 

of factors contributing to the actual performance and the economy of the designed filter 

and the best design will be obtained by using both methodologies and comparing various 

statistics to find out which design method gives better results for the particular 

application. 

9.3.3 Separable Implementation Using Matrix Decomposition Methods 

9.3.3.1 Choice of a Decomposition Method 

There are four decomposition methods to consider. All methods are tried to compare the 

performances. 

 Single stage SVD Multiple stage 
SVD 

Iterative SVD Optimal 
decomposition 

Number of 
parallel stages 

1 2 2 2 

Resulting design FIR (or IIR)5 FIR (or IIR) FIR (or IIR) FIR (or IIR) 

                                                           
5 ( ) contains the possible alternatives. 
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Computational 
requirements 

Minimal Intermediate Intermediate Very heavy 

Major claim for 
advantage 

Simple and quick Accurate Easy 1-D filter 
design 

Accurate and easy 
1-D filter design 

Major 
disadvantage 

Too rough 
(large error) 

Phase must be 
considered when 

designing 1-D filter 
sections 

Not accurate 
enough 

Not accurate 
enough & heavy 

computational load 

Filter Error(%) 10.7262 8.2740 9.9603 9.8521 
Order 16 16 16 16 

Total no of 
multiplications 

required 

32 64 64 64 

Table 9-2: Comparison of various decomposition methods 

The comparison is made on the basis of the least number of parallel stages that will 

satisfy the specified 10% overall error. Also, the 1-D filter design methods used are 

identical for the four different decomposition methods (note that perhaps this is not quite 

fair on methods such as ISVD algorithm or OD algorithm which put their strengths on 

making filter design task easier by keeping the 1-D magnitudes all positive). As can be 

seen in the table, the best performance can be obtained by multiple stage SVD algorithm 

that, with two parallel stages, results in a filter error of 8.274%.  

As multiple stage SVD algorithm produces four sets of 1-D magnitude responses, there 

are four 1-D filters to be implemented and their coefficients are shown in Table 9-3. The 

1-D filter design method used is least-squares algorithm. 

Order 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
z1 stage 

1 
0.0004 -

0.0004 
-

0.0049 
0.0114 0.0083 -

0.0704 
0.0819 0.5015 0.5015 0.0819 -

0.0704
0.0083 0.0114 -

0.0049 
-

0.0004
0.0004

z1 stage 
2 

0.0022 0.0055 -
0.0074 

0.0037 0.0406 -
0.0841 

-
0.1752

0.0082 0.0082 -
0.1752

-
0.0841

0.0406 0.0037 -
0.0074 

0.0055 0.0022

z2 stage 
1 

-
0.0004 

0.0028 -
0.0167 

-
0.0246 

0.0600 0.0849 0.0071 0.0139 0.0139 0.0071 0.0849 0.0600 -
0.0246 

-
0.0167 

0.0028 -
0.0004

z2 stage 
2 

-
0.0025 

0.0080 0.0130 -
0.0165 

-
0.0338 

-
0.0109 

0.0028 0.0050 0.0050 0.0028 -
0.0109

-
0.0338

-
0.0165 

0.0130 0.0080 -
0.0025

Table 9-3: Coefficients of the designed filter 

The filters shown above are symmetric about the centre (which is formed by the 

coefficients for 7th order and 8th order), therefore the phase response is guaranteed to be 

linear. The repeated coefficients also raise the possibility of saving of components 

through exploitation of symmetry. 
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The filter order of 15, although slightly too high for photonic implementation, will be 

retained for the example purpose. If the filter order is to be reduced at this stage, then one 

would merge the separable expressions into a single expression, then use the balanced 

approximation method illustrated in Section 6. Such a procedure would result in an IIR 

filter design of reduced order. 

9.3.3.2 Photonic Implementation of the Separable 2-D Filter   

Because we are dealing with 2-D separable structure, we need to decide which 1-D 

photonic filter structure should be used to implement the four 1-D filter stages. Table 9-4 

is a comparison of the structures on the number of components required. 

 Binary Transversal Direct Parallel 
No of splitting stages 

per amplifier 
10 19 30 10 

Total no. of optical 
phase modulators 

34 0 64 96 

Total no. of optical 
attenuators 

64 64 64 96 

Total no. of optical 
couplers 

126 142 136 184 

Total no. of optical 
amplifiers 

4 4 4 4 

Total total no. of 
components 

228 210 268 380 

Remarks Low attenuation No phase modulators 
required 

Simple, but inefficient Inefficient, but low 
attenuation 

Table 9-4: Comparison of different fiber-optic filter structures 

In Table 9-4, the number of splitting stages per OA is used to indicate how many signal 

splitting stages the optical pre-amplifier must compensate for. If 30 stages must be 

compensated for as in the direct structure, the amplification factor would need to be 

(√2)30=32768 which is clearly unacceptable for optical amplifiers. A solution such as 

including several OAs in cascade would be required in such situations provided the 

accumulated ASE noises do not surpass the signal level. For the example, transversal 

filter structure is chosen as the implementation as it appears to be the most efficient 

structure. Below diagram shows the schematic diagram for the photonic implementation. 
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Figure 9.2: Schematic diagram of the separable 2-D filter 
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Figure 9.3: 1-D filter stage 1 
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Figure 9.4: 1-D filter stage 2 

Because the filter is circularly symmetric, the filter structure and attenuator/amplifier 

coefficients are the same for the second dimension except for the delay which must be 

replaced by z2
-1. Physically, this delay would correspond to (z1

-1)255 as one line delay is 

same as the entire row of pixels. For the bottom parallel section of Figure 9.3, the 

positive subsections and the negative subsections of the two 1-D subsections will need to 
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be exchanged. This is because the binary splitting stages at the start and end of the 

structure shown in Figure 9.2 introduce another phase shift of 180° for the lower stage. 

Exchanging of subsections can compensate for the phase shift. The filter coefficients are 

related to the attenuator settings by 

 termsve- of No -  termsve+ of No

,
2

2

=

−== −++

k
where

ha
h

a iik
i

i

 

Eq. 9.3.1: Relationship between the filter coefficients and the attenuator settings 

where the number of positive terms is greater than the number of negative terms in the 

transfer function. a+i and a-i can be exchanged and multiplied by -1 to obtain the settings 

if the reverse is true. The magnitude response of the filter is plotted in Figure 9.5. 
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Figure 9.5: Magnitude response of the designed 2-D filter 

9.3.4 Non-Separable Implementation Using Direct Methods 

9.3.4.1 Choice of a Design Method 

There are two methods to choose from: frequency sampling method and McClellan 

transformation method. The designs results are shown in Table 9-5. 
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Property Frequency sampling method McClellan Transformation 
Method 

Resulting design FIR FIR or IIR 
Requirements Magnitude specification 1-D Magnitude specifications and 

a transformation function 
Remarks The filter accuracy depends 

heavily on the accuracy of 
frequency sampling 

Better transformation functions 
may result in much improved error 

Filter order 20×20 12×12 
Magnitude spec. error(%) 7.61 22.68% 

Table 9-5: Comparison of direct design methods 

The poor performance of McClellan transformation method can be attributed to its low 

attenuation in the stopband. It is envisaged that with a better transformation function, 

McClellan transformation method will perform better. For the current design task 

however, frequency sampling method is chosen. The resultant filter coefficients are not 

shown due to the number of coefficients being too large to show here. 

9.3.4.2 Reduction of Filter Order Using Balanced Approximation Method 

The filter design in the current form requires a 20×20 order filter. This implies that for 

some signal paths, the signal must go through 20+20 = 40 power splitting stages. A huge 

pre-amplification factor will therefore be required. A solution to this problem is to use 

the filter order reduction method of Section 6. In this case, the reduced filter is 10×10 

resulting in 11+11 = 22 splitting stages which is still large, but again for example 

purpose,is retained. 

Order 0 1 2 3 4 5 6 7 8 9 10 
0 0.0015  -0.0046    0.0120   -0.0239    0.0290   -0.0258    0.0246 -0.0250    0.0262   -0.0197    0.0092 
1    -0.0045    0.0098   -0.0251    0.0628   -0.0895    0.0991   -0.1155     0.1212   -0.1174    0.0816   -0.0373 
2     0.0128   -0.0325    0.0702   -0.1456    0.1945   -0.2091    0.2341    -0.2318    0.2181   -0.1479    0.0706 
3    -0.0273    0.0852   -0.1757    0.2946   -0.3387    0.3073   -0.2844     0.2461   -0.2319    0.1602   -0.0844 
4     0.0370   -0.1279    0.2614   -0.3985    0.4165   -0.3249    0.2366    -0.1628    0.1567   -0.1155    0.0711 
5    -0.0437    0.1660   -0.3410    0.4815   -0.4550    0.2844   -0.1124     0.0031   -0.0112    0.0317   -0.0394 
6     0.0520   -0.2103    0.4309   -0.5751    0.5001   -0.2461   -0.0139     0.1646   -0.1466    0.0590    0.0059 
7    -0.0531    0.2156   -0.4349    0.5640   -0.4755    0.2151    0.0571    -0.2204    0.2045   -0.1033    0.0123 
8     0.0469   -0.1903    0.3841   -0.4995    0.4244   -0.1944   -0.0508     0.1957   -0.1731    0.0941   -0.0124 
9    -0.0291    0.1171   -0.2344    0.3020   -0.2527    0.1154    0.0245    -0.1134    0.1145   -0.0534    0.0051 

10     0.0117   -0.0487    0.1017   -0.1362    0.1171   -0.0529   -0.0127     0.0468  -0.0388    0.0156    0.0003 

Table 9-6: Denominator coefficients 

Order 0 1 2 3 4 5 6 7 8 9 10 
0 1.0000   -3.3531    6.6740   -9.7374   11.1831  -10.3924    7.8531 -4.7539    2.2164   -0.7249    0.1283 
1    -2.9261    9.8116  -19.5290   28.4926  -32.7230   30.4093  -22.9790    13.9103   -6.4854    2.1211   -0.3753 
2     5.4318  -18.2134   36.2521  -52.8915   60.7444  -56.4494   42.6564   -25.8220   12.0390   -3.9375    0.6967 
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3    -7.5706   25.3851  -50.5266   73.7179 -84.6629   78.6767  -59.4526    35.9896  -16.7795    5.4880   -0.9710 
4     8.4280  -28.2599   56.2486  -82.0662  94.2508  -87.5866   66.1854   -40.0654   18.6797   -6.1095    1.0809 
5    -7.6733   25.7295  -51.2120   74.7179 -85.8115  79.7440  -60.2591    36.4779  -17.0071    5.5624   -0.9841 
6     5.7326  -19.2220   38.2595  -55.8202  64.1080  -59.5752   45.0184   -27.2519   12.7057   -4.1556    0.7352 
7    -3.4579   11.5948  -23.0783   33.6710 -38.6703  35.9360  -27.1553    16.4385   -7.6641    2.5067   -0.4435 
8     1.6190   -5.4287   10.8053   -15.7649  18.1056   -16.8254   12.7142    -7.6965   3.5884   -1.1736    0.2076 
9    -0.5366    1.7992   -3.5812    5.2250    -6.0008    5.5765   -4.2139     2.5509  -1.1893    0.3890   -0.0688 

10     0.0965   -0.3236    0.6441    -0.9398    1.0793   -1.0030    0.7579    -0.4588   0.2139   -0.0700    0.0124 

Table 9-7: Numerator coefficients 

The filter error is found to be 6.57% which is actually less than the original design! It has 

therefore been shown that the application of filter order reduction did not result in any 

notable degradation in the performance. As can be deduced from the fact that there are 

two sets of filter coefficients, the resulting design is an infinite impulse response design. 

Another factor which must be taken into account is the fact that neither numerator nor the 

denominator is symmetrical. No components are duplicated therefore removing the 

possibility for saving of components by exploitation of symmetry. 

9.3.4.3 Photonic Implementation of Non-Separable Filters 

As the filter structure is in form of IIR filter, the structure proposed in Section 8 must be 

employed in realizing the fiber-optic filter. The filter shown in Figure 8.1 will form the 

subsection of the IIR structure shown in Figure 8.11. The actual filter schematic diagram 

is omitted as the diagram will be too cluttered to make any clear statement of the 

structure of the filter. The attenuator settings can be calculated by considering how many 

splitting stages the signal being attenuated by the coefficient module must go through. 

The relationship between the attenuator settings aij and the filter coefficients hij is given 

by 

22
2

++= jk
ij

ij i

h
a       Eq. 9.3.2 

where ki is the order of the filter in n1 dimension. The filter statistics are given in Table 9-

8. The filter is shown to be very inefficient compared to the separable implementations as 

the number of components required is very much higher. Clearly, the trade off for the 

good error response is the large number of components required to implement the design 

in practice. 
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Factor 2-D Direct Form 
No of splitting stages per amplifier 33 (worst case) 

No. of OPMs 242 
No. of optical attenuators 242 
No. of optical couplers 528 

No. of optical Amplifiers 2 
Total no. of components 1014 

Remarks Very small error 

Table 9-8: Direct structure filter statistics 

The filter magnitude response is shown below in Figure 9.6. Although the passband 

contains some irregularities, the phase response of IIR filters designed using balanced 

approximations remains approximately linear (refer to Section 6) therefore satisfying the 

phase requirement of the specification. 
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Figure 9.6: Normalized filter magnitude response 

9.3.5 Comparison of Matrix Decomposition Method Design and Direct Method Design 

Although we have started out with the exactly the same specification, the two design 

results are strikingly different. Direct method results in a filter with over 1000 elements 

whereas matrix decomposition method results in a filter with around 200 elements. The 

error is also different. Various factors such as performance and economy must be taken 

into account when deciding which structure to implement. The table below shows the 

comparison of the two methods using the results obtained for this example. For the 
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example, the better implementation technique would be matrix decomposition method as 

it offers a filter of reasonable performance with smaller number of components. 

Property Direct design method Matrix decomposition method 
No of splitting stages per OA 33(worst case) 19 

No of OAs 2 4 
No of attenuators 242 64 

No of couplers 528 142 
No of phase modulators 242 64 
Total no of components 1014 210 

Error(%) 6.57 8.27 
Remark Very good transition band and 

low error 
Economical 

Table 9-9: Comparison of direct method and matrix decomposition method 

9.4 Possible Areas of Applications 

The fiber-optic and integrated photonic signal processing has found applications in areas 

such as optical matrix multiplications, convolutions and broadband signal processing, 

time division multiplexing in the femtosecond time resolution, high order optical 

correlation, higher order spectrum analysis for amplitude and phase, spatial and time 

photonic Fourier transformation. Because of the wideband properties of optical fibers and 

integrated photonic waveguides,  PSP technique makes a natural processing architecture 

for fiber transmission systems carrying wide bandwidth data. An application of 2-D fiber-

optic signal processing system would be the signal processing of ultra-fast TDM 

information that is the photonic packet switching technique. Novel time division coding 

used as photonic headers is also another potential application of M-D PSP. 2-D fiber-

optic signal processing architecture can be therefore a natural candidate for the 

processing of ultra-fast signals transmitted over optical guided media. 

Further capabilities of 2-D fiber-optic signal processing can be explored by considering 

multiplexing of signals by some form of wavelength division multiplexing. By 

transmitting the entire frame of the ultra-fast signals at once, it becomes possible to 

process the signal without using delays and by just using optical attenuators and OAs. 

However there are many practicalities to be overcome in realizing such as system and 

further works is required. 
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9.5 Concluding remarks 

The objective of the research in this report is to explore the possible ways of realizing a 

2-D signal processing system using fiber-optic signal processing architecture. A general 

technique for designing a 2-D filter is illustrated and numerous examples of utilization of 

the technique are given. Although the discussion is focused on fiber-optic systems, the 

design procedure for 2-D filters are just as applicable to any other signal processing 

architectures. For example, the 2-D filter order reduction method given in Section 6 can 

be used to simplify 2-D lightwaves systems which may or may not be fiber-optic 

systems. 

The design of 2-D filters is classified into two different classes. One class used matrix 

decomposition to reduce the design of 2-D filters into a set of 1-D filter design 

procedures. The other class used direct extensions of 1-D filter design methods. It is 

found that neither has a distinctive superiority over another and that the designer has to 

choose what is the best for the particular application, most likely by designing both and 

comparing the performances. All of the design procedures are implemented using the 

MATLAB™ programming language.  

Among the matrix decomposition methods, the multiple stage singular value 

decomposition method of Section 6.2 performed the best whereas for direct methods, 

frequency sampling method produced filters with smallest errors. However, the result 

should be taken with caution as there are many factors to be considered before declaring 

one method superior over another. The differences between the various methods are 

outlined in Table 9-2 and Table 9-5. 

A 2-D Filter order reduction method is applied to make fiber- and integrated optic signal 

processing more feasible. The technology allows the filter designer to produce filters of 

orders that are implementable in practice without sacrifices in performance. 

Different possible filter structures are proposed and illustrated for photonic 

implementation of 2-D filters. Most of the filter structures discussed can be used in 1-D 

coherent fiber-optic signal processing and are not limited to 2-D coherent fiber-optic 
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signal processing. Some of the proposed structures such as transversal structure are 

extremely efficient in the number of components used to achieve a certain performance 

requirement. To make the efficient structures possible, the phase shifting property of 

optical couplers when the incoming lightwaves is cross-coupled is utilized. Filter 

structures for FIR and IIR filters are also shown and examples are given in Section 8.10. 

It is evident that the fiber-optic signal processing technology presents a new direction in 

the usage of optical fiber, lasers, and photonics technologies which are evolving very 

fast. In [4] an incoherent signal processing system operating at 100 MHz is demonstrated. 

The authors note that the raising this capability to over 10 GHz is a relatively 

straightforward procedure involving shorter fiber lengths and lasers and detectors with 

faster rise and fall time. They also note that although conventional digital signal 

processing and analog signal processing techniques are limited in their usefulness for 

signal bandwidths exceeding one or two GHz. Current research efforts on fiber-optic 

signal processing on lightwaves of millimeter wavelength region will allow signal 

processing at bandwidths of up to 100GHz even to THz region if parametric 

amplification is employed. The field of 2-D signal processing which requires ultra-fast 

processing capability has a great deal to gain from the usage of the high speed processing 

capability of fiber-optic architectures. In particular especially with the fast pace of 

research and inventions of photonic circuits reaching the nano-scale  employing photonic 

crystal wave guiding techniques will allow multi-dimensional processing in the photonic 

domain flourishing in the near future. 
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