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Abstract 

A digital filter signal processing design method is employed to systematically synthesise tunable photonic 

filters with variable passband and centre wavelength/frequency characteristics for lowpass, highpass, 

bandpass and bandstop types.  Potential applications of such filters and the existing design techniques in 

WDM and dispersion equalisation are discussed. Basic optical filter structures,  the first-order all-pole 

photonic filter (FOAPPF) and the first-order all-zero photonic filter (FOAZPF) are described. Thence the 

design process of tunable optical filters and the design of the second-order Butterworth lowpass, 

highpass, bandpass and bandstop tunable optical filters are described. The tunabiity of the fiter passband 

and roll-off band is examined with respect to the pole-zero patten. 
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1 INTRODUCTION 

Tunable photonic filters (PFs) with variable bandwidth and centre frequency characteristics are important 

in applications where dynamic changes in the bandwidth and centre frequency of the filter are required.  

One such application is in frequency-division-multiplexing (FDM) or multi- wavelength-division-

multiplexed (WDM) optical systems, which utilises the large bandwidth of optical fibres to increase the 

transmission capacity which is mainly limited by fibre dispersion .  In WDM systems, tunable photonic 

filters are used as optical demultiplexers at the receivers to select one or more desired channels at any 

wavelength. 

There have been reports of several types of tunable PFs such as the optical ring resonators[1], optical 

transversal filters [2], and Fabry-Perot interferometers [3], [4].  These filters may be referred to as 

bandpass tunable photonic filters (BPTPF) because their magnitude responses have Gaussian-type 

characteristics.  Another type of tunable PF is the cascaded-coupler Mach-Zehnder channel 

adding/dropping filter whose output ports constitute a power-complementary pair; one port is used as a 

bandpass filter while the other port is used as a bandstop filter [5].  It is believed to the best of our 

knowedge that there has been no previous report of a systematic filter design technique, which can be 

used to design tunable PFs with the essential features of variable bandwidth and centre frequency 

characteristics as well as general filtering characteristics such as lowpass, highpass, bandpass and 

bandstop characteristics. 

Micro-rings have been proven to be the most effective resonance structures for optica  add/drop muxes, 

optica fiters etc. Interferometers using planar lightwave circuit technology also gain popularity for 

integrated photonics. In this report, we present the design of tunable PFs with variable bandwidth and 

centre frequency characteristics as well as lowpass, highpass, bandpass and bandstop characteristics.  

We use extensively the structures of micro-ring and integrated interferometers in our proposed photonic 

filter design. Techniques for the design of digital filters is adopted and described in the Appendix as a 

reference. The filter design method employing a graphical approach described here is adopted from that 

proposed by Ngo and Binh [6] in which non-tunable PFs were designed. The all-pole micro-rings and al-

zero interferometers of firt order are cascaded and interleaved so as to formulate the z-transform transfer 

function of the fiters and ease for practica implementation. 

The paper is organised as follows. Section 2 outlines the basic structures of tunable filters with much 

reference to the digital filter design techniques given in the Appendix. The composite design of optical 

filters whose filtered band and centre optical frquency are tunable to a desired position is described 

illustrating the effective ness of the systematic design procedures. 

2 BASIC STRUCTURES OF TUNABLE PHOTONIC FILTERS 

This section describes the basic filter structures, namely, the first-order all-pole photonic filter (FOAPPF) 

and the first-order all-zero photonic filter (FOAZPF) of tunable PFs. These filters employ a fundamnetal 

approach of recursive filters whose characteristics are summarised in the Appendix. 
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2.1 First-Order All-Pole PF 

Considering a basic optical filter structure shown in Figure 1 represents the kth-stage of a FOAPPF1 

using the planar lightwave circuit (PLC) technology.  The FOAPPF consists of an optical waveguide loop 

interconnected by two identical tunable couplers (TCs) and a thermo-optic phase shifter (PS). This is the 

basic structures of mcro-ring resonators.  The TC, which is a symmetrical Mach-Zehnder interferometer, 

consists of, in this case, two 3-dB directional couplers interconnected by two waveguide arms of equal 

length. This structure can be implemented using the planar lightwave circuit (PLC) silica on siicon for the 

1550 nm waveength region. The phase shifter is usually implemented by thermooptic effect using an 

electrode coated on the surace of the micro-ring. One can consider that thethe input port is the ADD port 

and the output port is the DROP port of ADD/DROPPmuxes currently popular in metropolitan optica 

networks. Thence we can observe in later section that when these PFs are cascacded the would for 

severa dropp and add ports.  

ap,kE ap,kE

φ    k

Phase Shifter (PS)

in out

Zero
Input

Output
Not
Used

Tunable Coupler
(TC)

k(a   , θ  )k
Loop Delay T

Tunable Coupler
                    (TC)

k(a   , θ  )k

 

Figure 1  Schematic diagram of the kth-stage first-order all-pole optical filter (FOAPPF) using the PLC 

technology. 

The TC has the  

complex cross - coupled coefficient w= γ θa jk kexp( )                           (1) 

 and  complex direct - coupled coefficient w= −γ θ( ) exp( )1 a jk k          (2) 

where γ w (typically γ w = 0 89.  for an insertion loss of 0.5 dB) is the intensity transmission coefficient of 

the TC.  The cross-coupled intensity coefficient of the TC is given as 

( ) 2cos1 kka ϕ+= ,                      ( )0 1≤ ≤ak          (3) 

from which the phase shift of the PS on the upper arm of the TC is given by 

( )12cos 1 −= −
kk aϕ                  ( )0 2≤ ≤ϕ πk           (4) 

and the resulting phase shift of the TC is given as 

                                                 
1Note that the FOAPPF has been used in the design and implementation of an optical integrator for dark-soliton 
generation 
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⎥
⎦

⎤
⎢
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−

= −

1cos
sintan 1

k

k
k ϕ

ϕθ           ( )− ≤ ≤π θ π2 2k .         (5) 

The optical transmittances of the upper (Λ1k ) and lower (Λ2k ) halves of the waveguide ring are defined 

as   Λ1 1 1k k kL j T= − −exp( )exp( )α ωw                                          (6) 

Λ2 2 2k k k kL j T j= − −exp( )exp( )exp( )α ω φw                         (7) 

where the amplitude waveguide propagation loss is typically αw  cm= −0 01151 1.  as determined from 

α αw w dB cm 8.686= ( )  with αw dB cm dB cm( ) .= 0 1 , L k1  and L k2  are the waveguide lengths 

of the upper and lower halves of the micro-ring T k1  and T k2  are the corresponding time delays of the 

upper and lower halves of the ring, j = −1, ω  is the angular optical frequency, and φk  ( )0 2≤ ≤φ πk  

is the phase shift of the PS.  Note that the lengths of the lower and upper halves of the ring do not 

necessarily need to be the same.  

Using the signal-flow graph method described in Ref.[6] together with eqns. (A1) and (A2), the transfer 

function of the kth-stage FOAPPF is simply given, by inspection of Figure 1, as 

H
E

E
a j

a jk
k

k

k k k

k k k k
ap

ap
out

ap
in

w

w
,

,

,
( )

exp( )
( ) exp( )

ω
γ θ

γ θ
= =

− −
2

1 1 2
2

1 2

Λ
Λ Λ

                   (8) 

where E kap
in

,  and E kap
out

,  are the electric-field amplitudes at the input and output ports of the FOAPPF, 

respectively.  It is useful to define the waveguide loop length L , the waveguide loop delay T, and the z-

transform parameter as 

L L Lk k= +1 2                                                         (9) 

T T Tk k= +1 2                                                         (10) 

z j T= exp( )ω                                                        (11) 

Substituting Eqs. (6), (7) and (9)–(11) into Eq. (8), the z-transform transfer function of the kth-stage 

FOAPPF becomes 

( )
k

kkkk
k pz

zTjjA
zH

−

−+
=

)exp()2(exp
)( 2,ap

,ap

ωφθ
                    (12) 

where the amplitude A kap,  and the pole location pk  in the z-plane are given by 

A a Lk k kap w w, exp( )= −γ α 2 ,                                                 (13) 

( ))2(exp)exp()1( ww kkkk jLap φθαγ +−−= .                (14) 

It is useful to express Eq. (14) in the phasor form as 
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( ))(argexp kkk pjpp =           (0 1≤ <pk ),            (15) 

where  p a Lk k= − −γ αw w( )exp( )1                                    (16) 

arg( )pk k k= +2θ φ .                                                          (17) 

2.2 First-Order All-Zero Optical Filter 

Figure 2 shows the schematic diagram of the kth-stage FOAZPF2 using the PLC technology.  The 

FOAZPF, which is an asymmetrical Mach-Zehnder interferometer, consists of two waveguide directional 

couplers DC1 and DC2, with cross-coupled intensity coefficients b k1  and b k2  (0 11 2≤ ≤b bk k, ), 

respectively, which are interconnected by two unequal waveguide arms with a differential time delay of T.  

The PS on the lower arm has a phase shift of ψ k  ( )0 2≤ ≤ψ πk . 

 

az,kE az,kE

DC1 DC2

b1k b2k

kΨ

Phase
Shifter
(PS)

az,kEZero
Input

in out 1

out 2

 

Figure 2  Schematic diagram of the kth-stage first-order all-zero optical filter (FOAZPF) using the PLC 

technology.  

The optical transmittances of the upper (Λ3k ) and lower (Λ4k ) waveguide arms are defined as 

Λ3 3 3k k kL j T= − −exp( )exp( )α ωw                                          (18) 

Λ4 4 4k k k kL j T j= − −exp( )exp( )exp( )α ω ψw                         (19) 

where L k3  and L k4  are the waveguide lengths of the upper and lower arms, and T k3  and T k4  are the 

corresponding time delays of the upper and lower arms. 

Using the signal-flow graph method as described in Ref.[6] , the transfer function of the kth-stage 

FOAZPF (for the upper output port) is simply given, by inspection of Figure 2, as 

H
E

E
b b b bk

k

k
k k k k k kaz

az
out 1

az
in az az,

,

,
( ) ( )( )ω γ γ= = − − −1 11 2 3 1 2 4Λ Λ            (20) 

                                                 
2Note that the FOAZOF has been used as the optical dark-soliton detectors 
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where E kaz
in

,  and E kaz
out 1

,  and E kaz
out 2

,  describe the electric-field amplitudes at the input and output ports of 

the FOAZPF, respectively, and γ az  (which is assumed to be γ γaz w= = 0 89.  (a typical value) for 

analytical simplicity) is the intensity transmission coefficient of the FOAZPF.  It is useful to define the 

differential length3 L  and the differential time delay4 T as 

L L Lk k= −4 3                                                           (21) 

T T Tk k= −4 3                                                             (22) 

By substituting Eqs. (18), (19), (20), (22) and (11) into Eq. (21), the z-transform transfer function of the 

kth-stage FOAZPF (for the upper output port) becomes 

H z A j T z z zk k k kaz az, ,( ) exp( ) ( )= − −−ω 3
1                               (23) 

where the amplitude A kaz,  and the zero location zk  in the z-plane are given by  

A b b Lk k k kaz az w, ( )( ) exp( )= − − −γ α1 11 2 3                          (24) 

z
b b

b b
L jk

k k

k k
k=

− −
−1 2

1 21 1( )( )
exp( )exp( )α ψw                   (25) 

It is useful to express Eq. (25) in the phasor form as 

( ))(argexp kkk zjzz =                                                    (26) 

where z
b b

b b
Lk

k k

k k
=

− −
−1 2

1 21 1( )( )
exp( )αw          (27) 

arg( )zk k= ψ                                                                         (28) 

Similarly, the z-transform transfer function of the kth-stage FOAZPF (for the lower output port) is given by 

( ) )()2(exp)( *1
3

*
,azin

,az

2out 
,az*

,az kkk
k

k
k zzzTjA

E
E

zH −+−== −πω               (29) 

where the amplitude A kaz,
*  and the zero location zk

* in the z-plane are given by  

A b b Lk k k kaz az w,
* ( ) exp( )= − −γ α2 1 31                                    (30) 

( ))(exp)exp(
)1(
)1(

w
12

21* πψα +−
−
−

= k
kk

kk
k jL

bb
bb

z                   (31) 

                                                 
3L is the differential length of the kth-stage FOAZOF [see Eq. (21)] as well as the loop length of the kth-stage 
FOAPPF [see Eq. (9)]. 
4T is the differential time delay of the kth-stage FOAZOF [see Eq. (22)] as well as the loop delay of the kth-stage FOAPPF [see Eq. 
(10)]. 
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In the phasor form, Eq. (31) becomes  

( ))(argexp ***
kkk zjzz =                                                   (32) 

where   )exp(
)1(
)1(

w
12

21* L
bb
bb

z
kk

kk
k α−

−
−

=                                  (33) 

arg( )*zk k= +ψ π                                                                 (34) 

From Eqs. (28) and (34), the zero zk  (for the upper output port) is out of phase with the zero zk
* (for the 

lower output port) by π .  This means that the transfer functions H zkaz, ( )  and H zkaz,
* ( )  constitute a 

power-complementary pair: 

H z H zk kaz az, ,
*( ) ( )

2 2
1+ =                                            (35) 

In other words, if H zkaz, ( )  has a lowpass magnitude response then H zkaz,
* ( )  has a highpass 

magnitude response, an important property which is useful in the design of tunable optical filters. 

Note that only the transfer function H zkaz, ( )  is used in the design of tunable optical filters as described 

in the following section. 

2.3 Mth-Order Tunable Optical Filter 

The transfer function of the Mth-order tunable all-pole optical filter, which is the transfer function of the 

cascade of M FOAPPFs, is defined as 

H z H zk
k

M
ap ap( ) ( ),=

=
∏

1
                                                  (36) 

The transfer function of the Mth-order tunable all-zero optical filter, which is the transfer function of the 

cascade of M FOAZPFs, is defined as 

H z H zk
k

M
az az( ) ( ),=

=
∏

1
                                                   (37) 

The transfer function of the Mth-order tunable optical filter can thus be written as 

H z G H z H z( ) ( ) ( )= ⋅ ⋅ap az                                              (38) 

where G is the amplitude optical gain of the erbium-doped fibre amplifier (EDFA).   

Figure 3 shows the block diagram representation of Eq. (38) which describes the transfer function 

between the input port and the upper output port (i.e., Output 1).  The lower output port (Output 2) is not 

used in filter design but its usefulness will be investigated. 
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Figure 3  Block diagram representation of the Mth-order tunable PF – all- pole and all-zero interleaved. 

Substituting Eqs. (12), (23), (36) and (37) into Eq. (38), the transfer function of the Mth-order tunable 

optical filter is given by 

( ) ( ) ( )
( )⎥⎦

⎤
⎢
⎣

⎡
−
−

⋅⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
+−+= ∏∑ ∑

== =

M

k k

k
M

k

M

k
kkkk pz

zzATTjzH
11 1

322exp)( ωφθ               (39) 

where the amplitude A is defined as 

A G A Ak
k

M
k=

=
∏ ap az, ,

1
                                            (40) 

The proposed Mth-order tunable optical filter has the advantage that its poles and zeros can be adjusted 

independently of each other.  Thus, a particular pole-zero pattern can easily be obtained to design filters 

with general characteristics. 

3 DESIGN OF TUNABLE PHOTONIC FILTERS 

This section describes the design of tunable optical filters and also presents a detailed design of the 

second-order Butterworth lowpass, highpass, bandpass and bandstop tunable PFs with variable  3dB 

bandwidth and centre frequency characteristics. 

In general, the design of a tunable optical filter from the characteristics of a digital filter involves the 

following stages: (1) the specification of the desired magnitude response of the optical filter in the optical 

domain, which is usually described by the spectrum of the optical signals to be processed by the filter; (2) 

the design of a digital filter whose magnitude response in the digital domain approximates the desired 

magnitude response of the optical filter in the optical domain; (3) the design of the PF structure whose 

transfer function is similar in form to the transfer function of the digital filter; (4) the design of the 

parameters of the optical filter structure using the pole-zero characteristics of the digital filter; and  (5) the 

practical realisation of the PF. 

3.1 Design Equations for Tunable Optical Filters 

For analytical simplicity, the exponential factor in Eq. (47), which represents a linear phase term, is 

neglected because it has no effect on the magnitude response of the filter.  The design of a tunable 

optical filter from the characteristics of a digital filter requires the second factor of Eq. (47) to be equal to 

Eq. (1) such that the following equations hold: 

A A= $                                                              (41) 
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p pk k= $                                                             (42) 

z zk k= $                                                              (43) 

Substituting Eqs. (13), (24) and (40) into Eq. (41) results in 

( )
[ ] ( )∏

=

−

+−−−
= M

k
kkkkk

M

LLbba

A
G

1
32w

21
21

21
azw

)(exp)1)(1(

ˆ

α

γγ
                 (44) 

Using  Eqs. (A2) and (15)–(18) and subsituting into Eq. (42) results in 

a
p

Lk
k= −
−

1
$

exp( )γ αw w
 with       $ exp( )p Lk ≤ −γ αw w          (45) 

⎩
⎨
⎧

<−+−
≥−−

=
.02)ˆarg(     ,22)ˆarg(
,02)ˆarg(              ,2)ˆarg(

kkkk

kkkk
k pp

pp
θπθ
θθ

φ                (46) 

From Eq. (45), the largest value of the filter pole (i.e., $pk ) is restricted by the loss of the waveguide loop 

[i.e., γ αw wexp( )− L ].  For practical purposes, a full cycle phase shift of 2π  has been added, without 

affecting the filter performance, to the second equation of Eq. (46) so that φk  takes a positive value (i.e., 

0 2≤ ≤φ πk ).  Substituting Eqs. (A3) and (26)–(28) into Eq. (43) and using the relation 

z z zk k k= = =* $ 1 (i.e., the zeros are located exactly on the unit circle) results in 

b
Lk1

1
1 2

=
+ −exp( )αw

                                            (47) 

b k2 1 2=                                                                   (48) 

⎩
⎨
⎧

<+
≥

=
.0)ˆ(arg     ,2)ˆarg(
,0)ˆ(arg             ,)ˆarg(

kk

kk
k zz

zz
π

ψ                         (49)  

To change the centre frequency of the tunable optical filter without affecting its bandwidth, an additional 

phase shift of δ0  ( )0 20< <δ π  must be added to Eqs. (46) and (49), resulting in 

⎩
⎨
⎧

<−+−
≥−−

=
.0+2)ˆarg(     ,2+2)ˆarg(
,0+2)ˆarg(              ,+2)ˆarg(

00

00

δθπδθ
δθδθ

φ
kkkk

kkkk
k pp

pp
              (50) 

⎩
⎨
⎧

<+++
≥++

=
0)ˆ(arg     ,2)ˆarg(
0)ˆ(arg             ,)ˆarg(

00

00

δπδ
δδ

ψ
kk

kk
k zz

zz
                          (51) 

In summary, the design equations for the design of tunable optical filters are Eqs. (4), (5), (44), (45), (47), 

(48), (50) and (51). 
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3.2 Second-Order Butterworth Tunable PFs 

To demonstrate the effectiveness of the proposed filter design technique, this section describes the 

design of the second-order (M=2) Butterworth lowpass, highpass, bandpass and bandstop tunable PFs 

with variable bandwidth and centre frequency characteristics.   

In this example, a 1 5T =  GHz  filter is considered, resulting in T = 200 ps  and L = 4 cm .  Using 

γ γw az= = 0 89. , αw  cm= −0 01151 1.  and hence exp( ) .− =αw L 0 955, Eqs. (45) and (47) 

become 

a pk k= −1 1 18. $                      $ .pk ≤ 0 85                (52) 

b k1 0 523= .                                                                (53) 

the corresponding gain coefficient is 

( )

∏
=

−

= M

k
k

M

a

AG

1

ˆ392.0
                                                     (54) 

where ( ) 955.0)exp()(exp w32w =−=+− LLL kk αα  has been assumed for numerical simplicity. In 

summary, Eqs. (4), (5), (48) and (50)–(54) are used in the design of the second-order Butterworth tunable 

PFs. The following definitions are used hereafter.  The normalised photonic frequency on the frequency 

axis of the squared magnitude response represents ω πT , the squared magnitude responses are plotted 

over the Nyquist interval (i.e., 0 1≤ ≤ω πT ), ωc  is the 3-dB angular cutoff frequency of the lowpass 

and highpass filters, and ωc1 (ωc2) is the 3-dB angular lower (upper) corner frequency of the bandpass 

and bandstop filters where ω ωc1 c2< .  For the lowpass and highpass filters, the normalised 3-dB 

bandwidth is defined as ω πcT .  For the bandpass and bandstop filters, the normalised 3-dB bandwidth 

is defined as ( )ω ω πc2 c1− T . 

Using MATLAB, Table 1 and Table 2 show the computed design parameters of the second-order 

Butterworth lowpass and highpass (Table 1) digital filters with various cutoff frequencies and bandpass 

and bandstop (Table 2) digital filters5 with various sets of lower and upper corner frequencies.  Using 

Eqs. (4), (5), (48) and (50)–(54), Table 3 and Table 4 show the computed design parameters of the 

second-order Butterworth lowpass and highpass (Table 3) and bandpass and bandstop (Table 4) 

tunable PFs with variable bandwidth and fixed centre frequency (i.e., δ0 0= ) characteristics. 

Figure 4 shows the characteristics of the tuning parameters versus the normalised bandwidth (i.e., 

ω πcT ) of the lowpass and highpass tunable PFs with variable bandwidth (i.e., 0 1 0 9. .≤ ≤ω πcT ) 

                                                 
5These digital filters are described by the transfer function given in Eq. (1). 
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and fixed centre frequency (i.e., δ0 0= ) characteristics.  The values of these parameters are obtained 

from Table 3. 

Poles of $ ( ),H zkap     (k = 1 2, ) Zeros of $ ( ),H zkaz  k = 1 2,  

Filter Type ωcT
  

$A  $ $p p1 =
 

arg( $ )p1
 

)ˆ(arg
)ˆ(arg

1

2

p
p

−
=

 
$ $z z1 2=  arg

arg
( $ )

( $ )
z

z
1

2=
 

Lowpass 0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.0201 
0.0675 
0.1311 
0.2066 
0.2929 
0.3913 
0.5050 
0.6389 
0.8006 

0.8008 
0.6425 
0.5217 
0.4425 
0.4142 
0.4425 
0.5217 
0.6425 
0.8008 

–0.2258 
–0.4746 
–0.7718 
–1.1401 
–1.5708 
–2.0015 
–2.3698 
–2.6670 
–2.9158 

0.2258 
0.4746 
0.7718 
1.1401 
1.5708 
2.0015 
2.3698 
2.6670 
2.9158 

1 
1 
1 
1 
1 
1 
1 
1 
1 

π 
π 
π 
π 
π 
π 
π 
π 
π 

Highpass 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9 

0.8006 
0.6389 
0.5050
0.3913
0.2929
0.2066
0.1311
0.0675
0.0201 

0.8008 
0.6425 
0.5217 
0.4425 
0.4142 
0.4425 
0.5217 
0.6425 
0.8008 

–0.2258 
–0.4746 
–0.7718 
–1.1401 
–1.5708 
–2.0015 
–2.3698 
–2.6670 
–2.9158 

0.2258 
0.4746 
0.7718 
1.1401 
1.5708 
2.0015 
2.3698 
2.6670 
2.9158 

1 
1 
1 
1 
1 
1 
1 
1 
1 

0 
0 
0 
0 
0 
0 
0 
0 
0 

 
Table 1 Design parameters of the second-order (M=2) Butterworth lowpass and highpass digital filters 

with various cutoff frequencies.  For each bandwidth ω πcT , both the lowpass and highpass filters have 
the same poles which occur in complex-conjugate pairs.  The zeros are located exactly on the unit circle 
in the z-plane but there is a phase difference of π between the zeros of the lowpass and highpass filters. 

 

Poles of $ ( ),H zkap , 

(k = 1 2, )  

Zeros of $ ( ),H zkaz , 

(k = 1 2, ) 

Filter Type ω πc1T
 

ω πc2T
 

$A  $p1 =
 

arg( $ )p1
 

arg( $ )p2
 

$z1 =
 

arg( $ )z1
 

arg( $ )z2
 

Bandpass 0.40�0.
35�0.30
�0.25�0
.20�0.1
5�0.10� 

0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 

0.2425 
0.3375 
0.4208 
0.5000 
0.5792 
0.6625 
0.7548 

0.7138 
0.5700 
0.3980 
0 
0.3980 
0.5700 
0.7138 

−π 2  

−π 2  

−π 2  
0 
π  
π  
π  

π 2  

π 2  

π 2  
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 
1 

0 
0 
0 
0 
0 
0 
0 

π 
π 
π 
π 
π 
π 
π 

Bandstop 
 

0.40 
0.35 
0.30 
0.25 
0.20 
0.15 
0.10 

0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 

0.7548 
0.6625 
0.5792 
0.5000 
0.4208 
0.3375 
0.2425 

0.7138 
0.5700 
0.3980 
0 
0.3980 
0.5700 
0.7138 

−π 2  

−π 2  

−π 2  
0 
π  
π  
π  

π 2  

π 2  

π 2  
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 
1 

2π−  

−π 2  

−π 2  

−π 2  

−π 2  

−π 2  

−π 2  

π 2  

π 2  

π 2  

π 2  

π 2  

π 2  

π 2  

Table 2  Design parameters of the second-order (M=2) Butterworth bandpass and bandstop digital filters 
with various sets of lower (ω πc1T ) and upper (ω πc2T ) corner frequencies.  For each set of corner 

frequencies, both the bandpass and bandstop filters have the same poles which occur in complex-
conjugate pairs.  The zeros are located exactly on the unit circle in the z-plane. 
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(a)       (b)  
Figure 4  Characteristics of the tuning parameters versus the normalised bandwidth of the lowpass and 
highpass tunable PFs with variable bandwidth and fixed centre frequency (i.e., δ0 0= ) characteristic.  

(a) EDFA amplitude gains, G.  (b) Intensity coupling coefficients of both the lowpass and highpass filters. 
 

Parameters of H zkap, ( ) 

(k = 1 2, ) 

Parameters of H zkaz, ( )  

(k = 1 2, ) 

Filter Type ωcT
  

G a a1 2=
 

ϕ ϕ1 2=
 

θ θ1 2=
 

φ1 φ2  b k1  b k2  ψ ψ1 2=
 

Lowpass 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9 

43.08 
7.507 
5.774 
5.887 
7.294 
11.15 
22.24 
71.05 
1716 

0.0551 
0.2419 
0.3844 
0.4779 
0.5112 
0.4779 
0.3844 
0.2419 
0.0551 

2.6677 
2.1132 
1.8041 
1.6150 
1.5484 
1.6150 
1.8041 
2.1132 
2.6677 

–0.2369 
–0.5142 
–0.6687 
–0.7633 
–0.7966 
–0.7633 
–0.6687 
–0.5142 
–0.2369 

0.2480 
0.5538 
0.5656 
0.3865 
0.0224 
5.8083 
5.2508 
4.6446 
3.8412 

0.6996 
1.5030 
2.1092 
2.6667 
3.1640 
3.5281 
3.7072 
3.6954 
3.3896 

0.5230 
0.5230 
0.5230 
0.5230 
0.5230 
0.5230 
0.5230 
0.5230 
0.5230 

0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 

π 
π 
π 
π 
π 
π 
π 
π 
π 

Highpass 0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1716 
71.05 
22.24 
11.15 
7.294 
5.887 
5.774 
7.507 
43.08 

0.0551 
0.2419 
0.3844 
0.4779 
0.5112 
0.4779 
0.3844 
0.2419 
0.0551 

2.6677 
2.1132 
1.8041 
1.6150 
1.5484 
1.6150 
1.8041 
2.1132 
2.6677 

–0.2369 
–0.5142 
–0.6687 
–0.7633 
–0.7966 
–0.7633 
–0.6687 
–0.5142 
–0.2369 

0.2480 
0.5538 
0.5656 
0.3865 
0.0224 
5.8083 
5.2508 
4.6446 
3.8412 

0.6996 
1.5030 
2.1092 
2.6667 
3.1640 
3.5281 
3.7072 
3.6954 
3.3896 

0.5230 
0.5230 
0.5230 
0.5230 
0.5230 
0.5230 
0.5230 
0.5230 
0.5230 

0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 

0 
0 
0 
0 
0 
0 
0 
0 
0 

 

Table 3  Design parameters of the second-order (M = 2 ) Butterworth lowpass and highpass tunable PFs 
with variable bandwidth and fixed centre frequency (i.e., δ0 0= ) characteristics.  The values of these 

parameters are obtained from Eqs. (12), (13), (56) and (58)–(62) and Table 1.  For each bandwidth 
ω πcT , both the lowpass and highpass filters have the same poles and hence the same parameters of 
the FOAPPFs, that is, the same coupling coefficients (i.e., a1 and a2) and the same phase shifts (i.e., 

ϕ1, ϕ2 , φ1 and φ2 ).  For each bandwidth ω πcT , there is a phase difference of π between the 
FOAZPFs of the lowpass and highpass filters. 
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3.3 Tuning Parameters of the Lowpass and Highpass Tunable PFs 

The gain curves in Figure 4(a) show that a large EDFA gain, which can be achieved by having two EDFAs 

in cascade, is required for a very small or large filter bandwidth (e.g., G = 1716  or 65 dB is required at 

ω πcT = 0 1.  for the highpass filter and at ω πcT = 0 9.  for the lowpass filter).  These curves are 

symmetrical about the mid-band frequency (i.e., the required gain at ω πcT  for the lowpass filter is the 

same as that at 1 − ω πcT  for the highpass filter).  Figure 4(b) shows the intensity coupling coefficients 

of the FOAPPFs (i.e., a a1 2= ) and FOAZPFs (i.e., b k1 0 523= .  and b k2 0 5= . ) for both the lowpass 

and highpass filters.  The required coupling coefficients a a1 2=  can be obtained by varying the phase 

shifts ϕ ϕ1 2=  of the TCs.  Note that both the curves of a a1 2=  and ϕ ϕ1 2=  are symmetrical about 

the mid-band frequency. The lowpass and highpass filters require the phase shifts ψ ψ π1 2= =  and 

ψ ψ1 2 0= =  respectively, of the FOAZPFs. 

3.4 Tuning Parameters of Bandpass and Bandstop Tunable PFs 

Figure 5 shows the characteristics of the tuning parameters versus the normalised bandwidth (i.e., 

( )ω ω πc2 c1− T ) of the bandpass and bandstop tunable PFs with variable bandwidth (i.e., 

0 2 0 8. ( ) .≤ − ≤ω ω πc2 c1 T ) and fixed centre frequency (i.e., δ0 0= ) characteristics.  The values of 

these parameters are obtained from Table 4. 
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(a)     (b)     (c)  

Figure 5  Characteristics of the tuning parameters versus the normalised bandwidth of the bandpass and 
bandstop tunable PFs with variable bandwidth and fixed centre frequency (i.e., δ0 0= ) characteristics  

(a) EDFA amplitude gains, G.  (b) Intensity coupling coefficients of both the bandpass and bandstop 
filters.  (c) Optical phase shifts, where φ1, φ2  and ϕ ϕ1 2=  are the phase shifts of both the bandpass 

and bandstop filters. 
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Parameters of H zkap, ( ) , 

(k = 1 2, ) 

Parameters of H zkaz, ( ) , 

(k = 1 2, ) 

Filter 
Type� 

ωc1T
 

ωc2T
 

G a a1 2=
 

ϕ ϕ1 2=
 

θ θ1 2=
 

φ1 φ2  b k1  b k2  ψ1
 

ψ 2
 

Bandpass 
 

0.40 
0.35 
0.30 
0.25 
0.20 
0.15 
0.10 

0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 

63.46 
20.49 
9.734 
3.254 
13.40 
40.22 
197.5 

0.1577 
0.3274 
0.5304 
1.0000 
0.5304 
0.3274 
0.1577 

2.3249 
1.9232 
1.5100 
0 
1.5100 
1.9232 
2.3249 

–0.4083 
–0.6092 
–0.8158 
–1.5708 
–0.8158 
–0.6092 
–0.4083 

5.5290 
5.9308 
0.0608 
3.1416 
4.7732 
4.3600 
3.9582 

2.3874 
2.7892 
3.2024 
3.1416 
1.6316 
1.2184 
0.8166 

0.5230 
0.5230 
0.5230 
0.5230 
0.5230 
0.5230 
0.5230 

0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 

0 
0 
0 
0 
0 
0 
0 

π 
π 
π 
π 
π 
π 
π 

Bandstop 0.40 
0.35 
0.30 
0.25 
0.20 
0.15 
0.10 

0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 

197.5 
40.22 
13.40 
3.254 
9.734 
20.49 
63.46 

0.1577 
0.3274 
0.5304 
1.0000 
0.5304 
0.3274 
0.1577 

2.3249 
1.9232 
1.5100 
0 
1.5100 
1.9232 
2.3249 

–0.4083 
–0.6092 
–0.8158 
–1.5708 
–0.8158 
–0.6092 
–0.4083 

5.5290 
5.9308 
0.0608 
3.1416 
4.7732 
4.3600 
3.9582 

2.3874 
2.7892 
3.2024 
3.1416 
1.6316 
1.2184 
0.8166 

0.5230 
0.5230 
0.5230 
0.5230 
0.5230 
0.5230 
0.5230 

0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 
0.5000 

3π
3π
3π
3π
3π
3π
 

π 2
π 2
π 2
π 2
π 2
π 2
 

Table 4  Design parameters of the second-order (M=2) Butterworth bandpass and bandstop tunable PFs 
with variable bandwidth and fixed centre frequency (i.e., δ0 0= ) characteristics.  The values of these 

parameters are obtained from Eqs. (12), (13), (56) and (58)–(62) and Table 2.  For each bandwidth 
( )ω ω πc2 c1− T , both the bandpass and bandstop filters have the same poles and hence the same 

parameters of the FOAPPFs, that is, the same coupling coefficients (i.e., a1 and a2 ) and the same phase 
shifts (i.e., ϕ1, ϕ2 , φ1 and φ2 ). 

 
The gain curves in Figure 5(a) show that a large EDFA gain is required for a very small or large filter 

bandwidth (e.g., G = 197 5.  or 46 dB is required at ( ) .ω ω πc2 c1− =T 0 2  for the bandstop filter and 

at ( ) .ω ω πc2 c1− =T 0 8  for the bandpass filter).  These curves are symmetrical about the mid-band 

frequency (i.e., the required gain at ( )ω ω πc2 c1− T  for the bandpass filter is the same as that at 

1 − −( )ω ω πc2 c1 T  for the bandstop filter).  Figure 5(b) shows the intensity coupling coefficients of the 

FOAPPFs (i.e., a a1 2= ) and FOAZPFs (i.e., b k1 0 523= .  and b k2 0 5= . ) for both the bandpass and 

bandstop filters.  The required coupling coefficients a a1 2=  can be obtained by varying the phase shifts 

ϕ ϕ1 2=  of the TCs [see the dotted-dotted curve in Figure 5(c)].  Note that both the curves of a a1 2=  

and ϕ ϕ1 2=  are symmetrical about the mid-band frequency (i.e., the required values at 

( )ω ω πc2 c1− T  are the same as those at 1 − −( )ω ω πc2 c1 T ).  The dotted-dashed curves in 

Figure 5(c) show the required phase shifts φ1 and φ2  of the FOAPPFs for both the bandpass and 

bandstop filters.  The bandpass and bandstop filters require the phase shifts ( , )ψ ψ π1 20= =  (see the 

solid curves) and )2,23( 21 πψπψ ==  (see the dashed-dashed curves), respectively, of the 

FOAZPFs. 

3.5 Summary of Tuning Parameters of Micro-Ring PFs 

The tunable PFs with lowpass, highpass, bandpass and bandstop characteristics can be summarised  as: 

(i) For a particular filter bandwidth, the phase shifts (ψ1,ψ2 ) of the FOAZPFs determine the 

complementary characteristics of the filter.  That is, a lowpass filter can be transformed into a highpass 

MECSE-12-2005: "Photonic Signal Processing – Part II.2: Tunable Photonic Filters ...", Le Nguyen Binh



____________________________________________________________________________________________________ 

     © 2005 LN Binh PSP-Part II.2: Tunable Photonic Filters 
 

16

filter or vice versa, and a bandpass filter can be transformed into a bandstop filter or vice versa; and (ii) 

For a particular set of phase shifts (ψ1,ψ 2 ) of the FOAZPFs, the tuning parameters (i.e., the phase 

shifts ϕ ϕ1 2= , φ1 and φ2 ) of the FOAPPFs determine the bandwidth characteristics of a particular filter 

type (i.e., lowpass, highpass, bandpass or bandstop). 

3.6 Magnitude Responses of Tunable PFs with Variable Bandwidth and Fixed Centre Frequency 

Characteristics 

Figure 6 and Figure 7 show the squared magnitude responses of the lowpass [Figure 6(a)] and highpass 

[Figure 6(b)] and bandpass [Figure 7(a)] and bandstop [Figure 7(b)] tunable PFs with variable bandwidth 

and fixed centre frequency (i.e., δ0 0= ) characteristics.  Figure 6 shows that the bandwidth of each filter 

type (lowpass or highpass) can be varied from ω πcT = 0 4.  to ω πcT = 0 8.  by varying the phase 

shifts of the FOAPPFs (i.e., ϕ ϕ1 2= , φ1 and φ2 ) and by keeping the phase shifts of the FOAZPFs 

unchanged (i.e., ψ ψ π1 2= =  for lowpass and ψ ψ1 2 0= =  for highpass), see Figure 4.  Similarly, 

Figure 7 shows that the bandwidth of each filter type (bandpass or bandstop) can be varied from 

( ) .ω ω πc2 c1− =T 0 2  to ( ) .ω ω πc2 c1− =T 0 6 by varying the phase shifts of the FOAPPFs (i.e., 

ϕ ϕ1 2= , φ1 and φ2 ) and by keeping the phase shifts of the FOAZPFs unchanged (i.e., 

( , )ψ ψ π1 20= =  for bandpass and ( , )ψ π ψ π1 23 2 2= =  for bandstop), see Figure 5.  Note that 

the normalised centre frequencies are designed at ω πT = 0  for the lowpass and highpass filters and at 

ω πT = 0 5.  for the bandpass and bandstop filters. 
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(a)      (b) 
Figure 6  Squared magnitude responses of the lowpass and highpass tunable PFs with variable 

bandwidth and fixed centre frequency (i.e., δ0 0= ) characteristics.  (a) Lowpass.  (b) Highpass.  The 
numbers inside the legend box represent the normalised 3-dB cutoff frequencies (i.e., ω πcT ), which 

also correspond to the normalised filter bandwidths.  Note that the normalised centre frequency is 
designed at ω πT = 0 . 
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(a)       (b) 

Figure 7  Squared magnitude responses of the bandpass and bandstop tunable PFs with variable 
bandwidth and fixed centre frequency (i.e., δ0 0= ) characteristics.  (a) Bandpass.  (b) Bandstop.  The 

numbers inside the legend box represent the normalised 3-dB lower and upper corner frequencies 
( , )ω π ω πc1 c2T T .  The normalised filter bandwidth is given by ( )ω ω πc2 c1− T .  Note that the 

normalised centre frequency is designed at ω πT = 0 5. . 

3.7 Magnitude Responses of Tunable PFs with Fixed Bandwidth and Variable Centre Frequency 

Characteristics  

Figure 8 and Figure 9 show the squared magnitude responses of the lowpass [see Figure 8(a)] and 

highpass [see Figure 8(b)] and bandpass [see Figure 9(a)] and bandstop [see Figure 9(b)] tunable 

PFs with fixed bandwidth and variable centre frequency (i.e., δ π0 0 1= . ) characteristics.  The design 

parameters are exactly the same as those in Table 3 (or Figure 4) for the lowpass and highpass filters 

and in Table 4 (or Figure 5) for the bandpass and bandstop filters, except that an additional phase shift of 

δ π0 0 1= .  has been added to the phase shifts of the FOAPPFs [i.e., φ1 and φ2 , see Eq. (50)] and to the 

phase shifts of the FOAZPFs [i.e., ψ1 and ψ2 , see Eq. (51)]. 
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Figure 8  Squared magnitude responses of the lowpass and highpass tunable PFs with fixed bandwidth 
and variable centre frequency (i.e., δ π0 0 1= . ) characteristics.  (a) Lowpass.  (b) Highpass.  The 

numbers inside the legend box represent the new normalised 3-dB cutoff frequencies (i.e., 
′ = +ω π ω π δ πc cT T 0 ).  The normalised filter bandwidths are still the same as those in Figure 6 (i.e., 

ω π ω π δ πc cT T= ′ − 0 ).  Note that the new normalised centre frequency is at ω πT = 0 1. . 
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(a)       (b)  

Figure 9  Squared magnitude responses of the bandpass and bandstop tunable PFs with fixed bandwidth 
and variable centre frequency (i.e., δ π0 0 1= . ) characteristics.  (a) Bandpass.  (b) Bandstop.  The 

numbers inside the legend box represent the new normalised 3-dB lower and upper corner frequencies 
( , )′ ′ω π ω πc1 c2T T , where ′ = +ω π ω π δ πc1 c1T T 0  and ′ = +ω π ω π δ πc2 c2T T 0 .  The 

normalised filter bandwidths are still the same as those in Figure 7 (i.e., 
( ) ( )ω ω π ω ω πc2 c1 c2 c1− = ′ − ′T T ).  Note that the new normalised centre frequency is at 

ω πT = 0 6. . 

Figure 8(a) and (b) show that the squared magnitude responses are shifted by ω πT = 0 1.  to the right 

of the frequency axis when compared with the corresponding squared magnitude responses shown in 

Figure 6 (a) and (b).  The normalised centre frequency has been shifted from ω πT = 0  (Figure 6) to 

ω πT = 0 1.  but the corresponding filter bandwidths of Figure 6 and Figure 8 remain unchanged.  

Similarly, Figure 9(a) and (b) show that the squared magnitude responses are shifted by ω πT = 0 1.  to 

the right of the frequency axis when compared with the corresponding squared magnitude responses 

shown in Figure 7 (a) and (b).  The normalised centre frequency has been shifted from ω πT = 0 5.  

(Figure 7) to ω πT = 0 6.  (Figure 9) but the corresponding filter bandwidths of Figure 7 and Figure 9 

remain unchanged. 

Thus, the centre frequency of a tunable PF can be tuned, without affecting the filter bandwidth, to within 

one free spectral range by applying an additional phase shift of δ0  (0 20< <δ π ) to the phase shifters 

of the FOAPPFs and FOAZPFs.  From the point of view of the pole-zero pattern, the effect of δ0  on the 

FOAPPFs and FOAZPFs is to rotate the poles and zeros in the angular anticlockwise direction relative to 

the z-plane.  As a result, the pole-zero pattern of the resulting tunable PF rotates by some angular 

movement of δ0  relative to the z-plane, and this has the effect of shifting the filter centre frequency by δ0  

to the right of the frequency axis. 
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3.8 Summary and comments on Filtering Characteristics of Tunable PFs 

As shown in Figure 4, the phase shifts of the lowpass (i.e., ψ ψ π1 2= = ) and highpass (i.e., 

ψ ψ1 2 0= = ) tunable PFs are out of phase with each other by π.  As described in section 3.2, the 

transfer function H zkaz, ( )  (for the upper output port) and the transfer function H zkaz,
* ( )  (for the lower 

output port) are out of phase with each other by π.  Thus, if the upper output port of the tunable PF has a 

lowpass magnitude response, then its lower output port has a highpass magnitude response.  As a result, 

the tunable PF can be used as a channel adding/dropping filter which passes certain wavelength 

channels in one output port, while leaving the other channels undisturbed in the other output port.  As 

shown in Table 4 and Figure 5, the phase shifts ψ1 and ψ2  of a particular filter type (bandpass or 

bandstop6) are out of phase with each other by π.  As a result, both the output ports of the tunable PF 

have the same filtering characteristics (bandpass or bandstop).  In summary, the filtering characteristics 

of the tunable PF is shown in Table 5. 

Output Ports Filtering Characteristics 
Upper Output Port (Output 1) Lowpass Highpass Bandpass Bandstop 
Lower Output Port (Output 2) Highpass Lowpass Bandpass Bandstop 

Table 5  Filtering characteristics at the output ports of the second-order Butterworth tunable PF. 

 
The largest value of the filter pole, which is limited by the loss of the waveguide loop [see Eq. (48)], is 

restricted to be $ .pk ≤ 0 85  [see Eq. (52)].  As a result, a tunable PF cannot be designed to have a very 

narrow or broad bandwidth, which requires $ .pk > 0 85 .  Thus, the allowable normalised bandwidths of 

the tunable PF are in the range of 0 1 0 9. .≤ ≤ω πcT  for the lowpass and highpass filters and 

0 2 0 8. ( ) .≤ − ≤ω ω πc2 c1 T  for the bandpass and bandstop filters.  These ranges of filter bandwidths 

are adequate for many filtering applications.   

The normalised filter bandwidth can be extended to its full range (i.e., between 0 and 1) by incorporating 

an erbium-doped waveguide amplifier (EDWA) into the waveguide loop of the FOAPPF to compensate 

for the loop loss.  However, this has the drawback of increasing the cost as well as the complexity of the 

filter structure, where the latter may degrade the filter performance unless undesirable effects associated 

with the EDWA are minimised. 

Note that the presented design method is applicable to higher-order filters.  The roff-off steepness of the 

magnitude responses of the tunable PF can be increased by increasing the filter order and hence the 

number of the FOAPPFs and FOAZPFs.  However, the lowest filter order should be used to meet a 

prescribed set of filter specifications to keep the cost and complexity of the filter structure to a minimal. 

                                                 
6For the bandstop filter, it has been found from MATLAB that the phase shifts ψ1  and ψ 2  are only out of phase with each other by 
π  if the normalised centre frequency is at the mid-band frequency (i.e., ω πT = 0 5. ), which is the case being considered here. 
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The filter design technique is presented in a general manner and is thus applicable in the design of other 

types of tunable PFs such as the Chebyshev I and II and elliptic filters, whose properties have been 

summarised in the Appendix.  Obviously, the choice of a particular filter type would depend on specific 

applications. 

4 CONCLUDING REMARKS 

• A digital filter design technique has been employed to systematically design tunable PFs with variable 

bandwidth and centre frequency characteristics as well as lowpass, highpass, bandpass and bandstop 

characteristics. An Mth-order tunable PF, which has been designed using integrated-optic structures, 

consists of a cascade of M FOAPPFs with a cascade of M FOAZPFs. 

• The effectiveness of the PF design method has been demonstrated with the design of the second-order 

Butterworth lowpass, highpass, bandpass and bandstop tunable PFs with variable bandwidth and centre 

frequency characteristics.  In this design: for a fixed centre frequency, the filter bandwidth can be varied 

by varying the parameters of the FOAPPFs and by keeping the parameters of the FOAZPFs unchanged, 

and for a fixed bandwidth, the filter centre frequency can be varied, to within one free spectral range, by 

adding an additional phase shift to the phase shifters of the FOAPPFs and FOAZPFs.   

• As a verification of the technique, an experimental development of the first-order Butterworth lowpass 

and highpass tunable fibre-optic filters has been carried out. In addition to the Butterworth filters, the 

proposed filter design technique is applicable to the design of other types of tunable PFs such as the 

Chebyshev I and II and elliptic filters, depending on the specific application. 
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6 APPENDIX : FUNDAMENTAL CHARACTERISTICS OF RECURSIVE DIGITAL FILTERS 

It is essential that the fundamental properties of various design techniques and general characteristics of 

recursive (or IIR) digital filters are summarised for readers who are unfamil;iar with these filters. Further 

details can be found in references [9], [10], [11].  This basic knowledge is required for the design of 

tunable PFs as decribed in this report.  

6.1 IIR Filter Design Techniques 

The common approach to the design of recursive digital filters involves the transformation of a recursive 

analog7 (or continuous-time) filter into a recursive digital filter for a given set of prescribed specifications.  

This is due to the availability of well-developed techniques for analog filters which are often described by 

simple closed-form design formulas.  In such transformations, the essential properties of the frequency 

response of the analog filter are preserved in the frequency response of the resulting digital filter.  The 

two well-known techniques used for converting Butterworth, Chebyshev I and II, and elliptic analog filters 

to their corresponding digital filters are the impulse invariance and bilinear transformation methods.   

In the impulse invariance method, the impulse response of a digital filter is determined by sampling the 

impulse response of an analog filter.  This technique requires the analog filter to be bandlimited to avoid 

the aliasing (or interference) effect and thus is only effective for lowpass and bandpass analog filters.  If it 

is to be used for highpass and bandstop analog filters, then additional bandlimiting is required on these 

filters to avoid severe aliasing distortion. 

The bilinear transformation method involves an algebraic transformation between the variables s and z 

that maps the entire imaginary axis in the s-plane to one revolution of the unit circle in the z-plane.  Thus, 

a stable analog filter (with poles in the left half-side of the s-plane) can be transformed into a stable digital 

filter (with poles inside the unit circle in the z-plane).  As a result, unlike the impulse invariance method, 

this method does not suffer from the effect of aliasing distortion.  However, it suffers from the effect of 

nonlinear compression of the frequency axis and thus is only useful if this undesirable effect can be 

tolerated or compensated for.  

An alternative approach, which is valid for both the impulse invariance and bilinear transformation 

methods, is to design a digital prototype lowpass filter and then perform a frequency transformation on it 

                                                 
7Analog filters are commonly designed using standard approximation methods, namely, the Taylor series approximations and the 
Chebyshev approximations in various combinations.  Specifically, these approximation methods are used to approximate the desired 
frequency responses of four different types of analog filters, namely, the Butterworth, Chebyshev I and II, and elliptic filters. 
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to obtain the desired lowpass, highpass, bandpass and bandstop digital filters.  However, the use of the 

frequency transformation technique in the design of a digital filter is not so straightforward because the 

analog prototype lowpass filter is generally not known to the designer.  Thus, it is necessary to “find” an 

analog prototype lowpass filter such that, after transformation, the resulting digital filter would meet a 

given set of specifications. Rapid advances in the field of digital signal processing in recent years led to 

digital filter design techniques with standard functions in MATLAB8. The design of the digital filters and 

hence tuneable optical filters described in this paper  

6.2 Properties of Recursive Digital Filters 

The three common types of recursive digital filters are the Butterworth, Chebyshev I and II, and elliptic 

filters, and their properties are summarised as: 

• Butterworth digital filters: They are characterised by a magnitude response that is maximally flat in the 

passband and monotonic overall.  They sacrifice roll-off steepness for monotonicity in the passband and 

stopband.  If the Butterworth filter smoothness is not required, a Chebyshev or an elliptic filter can generally 

provide steeper roll-off characteristics with a lower filter order. 

• Chebyshev I and II digital filters:  Chebyshev I filters are equiripple in the passband and monotonic in 

the stopband, while Chebyshev II filters are monotonic in the passband and equiripple in the stopband.  

Chebyshev I filters roll off faster than Chebyshev II filters but at the expense of passband ripple.  

Chebyshev II filters have stopbands which do not approach zero like Chebyshev I filters but are free of 

passband ripple.  Both the Chebyshev I and II filters have the same filter order for a given set of filter 

specifications.   

• Elliptic digital filters: They are equiripple in both passband and stopband.  They offer steeper roll-off 

characteristics than the Butterworth and Chebyshev filters but suffer from passband and stopband 

ripples.  In general, elliptic filters, although the most expensive to compute, will meet a given set of filter 

specifications with the lowest filter order. 

These types of digital filters have zeros located on the unit circle in the z-plane (i.e., z = 1), which 

greatly simplify the design of tunable optical filters. 

6.3 Transfer Function of Recursive Digital Filters 

For analytical clarity, the variables with a cap [e.g., $ ( )H z ] are associated with digital filters while the 

corresponding variables without a cap [e.g., H z( ) ] are associated with optical filters. 

The transfer function of the Mth-order recursive digital filter can be expressed in a rational form as 

                                                 
8MATLAB ™ employs the frequency transformation technique together with the bilinear transformation method with frequency 
prewarping in the design of the Butterworth, Chebyshev I and II, and elliptic digital filters with lowpass, highpass, bandpass and 
bandstop characteristics.   

MECSE-12-2005: "Photonic Signal Processing – Part II.2: Tunable Photonic Filters ...", Le Nguyen Binh



____________________________________________________________________________________________________ 

     © 2005 LN Binh PSP-Part II.2: Tunable Photonic Filters 
 

23

( )
( )

( )( ) ( )
( )( ) ( )M

M

M

k k

k

pzpzpz
zzzzzzA

pz
zzAzH

ˆ  ˆˆ
ˆ  ˆˆˆ        

ˆ
ˆˆ)(ˆ

21

21

1

−−−
−−−

=

−
−

= ∏
=

L

L
                                   (A1) 

where $A  is a constant and z is the z-transform parameter [25].  Furthermore, $pk  and $zk  are the kth pole 

and zero in the z-plane, which can be expressed in the phasor forms as 

( ))ˆ(argexpˆˆ kkk pjpp =                    (0 1≤ <$pk ),           (A2) 

( ))ˆ(argexpˆˆ kkk zjzz =                             $zk = 1,           (A3) 

where arg  denotes the argument.  Note that the system stability requires the poles to be located inside 

the unit circle in the z-plane as described by the condition given in Eq. (2). 

Let the transfer function of the kth-stage first-order all-pole digital filter be defined as 

( )kpzk zH ˆ
1

,ap )(ˆ
−=                                                      (A4) 

and the transfer function of the kth-stage first-order all-zero digital filter be defined as 

( )kk zzzH ˆ)(ˆ
,az −=                                                    (A5) 

where the subscripts ap and az denote all-pole and all-zero.  The transfer function of the Mth-order all-

pole digital filter, which is the transfer function of the cascade of M first-order all-pole digital filters, is given 

by 

$ ( ) $ ( ),H z H zk
k

M
ap ap=

=
∏

1
.                                                (A6) 

The transfer function of the Mth-order all-zero digital filter, which is the transfer function of the cascade of 

M first-order all-zero digital filters, is given by 

$ ( ) $ ( ),H z H zk
k

M
az az=

=
∏

1
.                                                 (A7) 

The transfer function of the Mth-order recursive digital filter, as given in Eq. (1), can be written 

alternatively as 

$ ( ) $ $ ( ) $ ( )H z A H z H z= ⋅ ⋅ap az .                                       (A8 
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