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Abstract 

 
Statistical background modeling is a fundamental and 
important part for many visual tracking systems and other 
computer vision applications. This paper presents an 
effective and adaptive background modeling method for 
detecting foreground objects in both static and dynamic 
scenes. The proposed method computes SAmple 
CONsensus (SACON) of the background samples and 
estimates a statistical model per pixel. SACON exploits 
both color and motion information to detect foreground 
objects. SACON can deal with complex background 
scenarios including non-stationary scenes (such as 
moving trees, rain, and fountains), moved/inserted 
background objects, slowly moving foreground objects, 
illumination changes etc. Numerous experiments on both 
indoor and outdoor video sequences show that the method 
is robust to various types of background scenarios and, 
compared with several state-of-the-art methods, can 
achieve very promising performance.  
 
1. Introduction 
Background modelling is an important and fundamental 
part for many computer vision applications such as real-
time tracking [1, 2, 3, 4, 5], video/traffic surveillance [6, 
7] and human-machine interface [8, 9]. After the 
background is modelled, one commonly performs 
“background subtraction” to differentiate foreground 
objects (those parts are of interest to track or recognize) 
from the background pixels. The result of background 
modelling significantly affects the final performance of 
these applications.  
Generally speaking, a good background model should be 
able to achieve the following desirable properties:  
•  accurate in shape detection (i.e., the model should be 

able to ignore shadow, highlight, etc.);  
•  reliable in different light conditions (such as a light 

switched on/off, gradual illumination changes) and to 
the movement of background objects (e.g., if a 
background object is moved, that object should not 
be labelled as a foreground object);  

•  flexible to different scenarios (including both indoor 
and outdoor scenes);  

•  robust to different models of the background (i.e., a 
time series of observation at a background pixel can 
be either uni-modal or multiple-modal distributed) 
and robust in the training stage even if foreground 
objects exist; 

•  accurate despite camouflage (e.g., if a foreground 
object has similar color to the background) and 
foreground aperture (if a homogeneously colored 
object moves, many of the interior pixels of the 
object may not be detected);  

•  efficient in computation. 
Unfortunately, none of the existing background models 
can achieve desirable performance on all of the 
abovementioned criteria. 
In this paper, we propose a robust and efficient 
background modelling method, SAmple CONsensus 
(SACON), and we apply it to background subtraction. 
SACON gathers background samples and computes 
sample consensus to estimate a statistical model at each 
pixel. SACON is easy to perform but highly effective in 
background modelling and subtraction. Numerous 
quantitive experiments show the advantages of SACON 
over several other popular methods in background 
modelling/subtraction. 
The organization of the remainder of this paper is as 
follows: in section 2, we present a short review of the 
previous related work. We present the SACON method in 
section 3 and a framework for applying SACON to 
background subtraction in section 4. Experiments 
showing the advantages of our method are provided in 
section 5. We investigate the influence of the parameters 
of SACON on the results in section 6 and summarize in 
section 7. 
 
2. Related Work 
There are numerous background models appearing in the 
literature in recent years, [2, 3, 7, 8, 9, 10, 11, 12, 13, 14]. 
A simple background model usually assumes that the 
background pixels are static over time. The foreground 
objects can then be obtained by subtracting the current 
frame from the background image. 
Prominent examples are Pfinder [9] and W4 [7]. Pfinder 
assumes that the pixels over time window at a particular 
image location are single- Gaussian distributed. W4 
models the background by maximum and minimum 
intensity values, and the maximum intensity difference 
between consecutive frames in the training stage. 
Although they can deal with small or gradual changes in 
the background and work well if the background includes 
only a static scene, they may fail when background pixels 
are multi-modal distributed (e.g., waving trees) or widely 
dispersed in intensity. 
Several methods have been proposed to deal with 
multiple-model distributed background pixels. Wallflower 
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[10] employs a linear Wiener filter to learn and predict 
background changes. Wallflower works well for 
periodically changing pixels. However, when background 
pixels change dramatically or the movement of 
background pixels are less periodical, Wallflower is less 
effective in learning and predicting background changes.  
Other examples in include Tracey [11] which models 
foreground and background by codebook vectors; and 
[15], where “cooccurrence” of image variations at 
neighbouring image blocks is employed for modelling a 
dynamic background.  
The pixel-level Mixture of Gaussians (MOG) background 
model [2, 16] is effective in modeling multiple-modal 
distributed backgrounds. The basic idea of MOG is to 
assume that the observations at an image pixel can be 
modeled by a mixture of K Gaussians (K is usually set 
from 3 to 5). Let xt be a pixel value at time t. Thus, the 
probability that the pixel value xt is observed at time t is 
[2]: 
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where ,i tw is a weight, ,i tµ is the mean value, and ,i tΣ is the 
covariance matrix for the ith Gaussian distribution at time 
t. Each channel of the color space is assumed to be 
independent from the other channels. 
If a new observation xt belongs to the ith Gaussian 
distribution, the parameters of the ith Gaussian 
distribution at time t will be updated as follows: 
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whereα is learning rate; ,i tΜ is 1 when the observation 
matches the ith Gaussian distribution, and 0 otherwise. 
MOG can adapt to a change of the background (such as 
gradual light change, etc.). However, there still are some 
limitations of MOG: for example, in the training stage, 
MOG usually employs a K-mean algorithm to initialize 
the parameters, which is slow and may be inaccurate. 
When the background involves a wide distribution in 
color/intensity, modelling the background with a small 
number of mixtures of Gaussian distributions is not 
efficient. It is also hard to set the value of the learning rate 
α . 
A lot of variants of the MOG background model have 
been proposed [2, 13, 17]. Elgammal et. al. [13] presented 
a non-parametric background model which can handle 
situations where the background contains small motions 
such as tree branches and bushes. The method gathers 
recent samples per pixel and computes the non-parametric 
model (i.e., kernel density estimation using a Gaussian 
Kernel). The PDF is written as:  
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where N is the number of samples at a pixel. 
Since the cost to compute Equation (3) at each pixel is 
high, several pre-calculated lookup tables for the kernel 
function values, given different (xt-xi) and the kernel 
bandwidth, are used to reduce the burden of computation 
of the algorithm. Since the kernel bandwidth is estimated 
by using the median absolute deviation over sample for 
consecutive intensity values of the pixel, the method 
requires all the samples to be consecutive in time, and the 
bandwidth estimate may be inaccurate if the distribution 
of the background samples is multi-model. 
 
3. The Method of SACON 
We now define a background model Sample Consensus 
inspired by RANSAC [18]. Following previous works 
(such as [1, 2, 3, 10, 12, 13]), we assume that: 
1) the camera is stable during recording the video 

sequence. We do not assume a stable background, 
i.e., the background can include dynamic scenes such 
as moving trees, sea waves etc. 

2) the different color channels are independent of each 
other. Previous work (e.g. [2, 13]) and our 
experiments validate this assumption. 

3) the movements of dynamic background objects should 
be repetitive and should be seen during the training stage.  

4) when the foreground objects or inserted/moved 
background objects remain static for a long time, they 
should be adopted into the background. It is hard to 
differentiate static foreground objects from 
inserted/moved background objects by low level processing. 

Let N be the number of background samples at each pixel. 
For an observation at pixel m at time t—xt(m), we need to 
classify it into either a background pixel or a foreground 
pixel according to the background samples 
{ ( ) | 1,..., }ix m i N=  at that pixel location m. Each 

observation 1 kC C
t t t( , ..., )x x x=  has k channels (e.g., in 

RGB color space, each observation is expressed by three 
channels of R, G, B). Let:  
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For each observation at time t, we form a binary mask Bt  
defining the sample consensus classification (with “one” 
for a background pixel and “zero” for a foreground pixel): 
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where Tn is a value thresholding the number of data points 
that are within the error tolerance Tr of a mode. 
Tn should reflect the sample size N: the larger value N is, 
the larger value Tn should be set; the less N is, the less Tn 
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should be set. Likewise, Tn should also reflect the error 
tolerance Tr: the larger value Tr is set, the larger value Tn 
should be; vice versa. Thus, Tn can be approximately set 
to τ Tr N, where τ is a constant and is chosen empirically.  
 
4. Framework 
Having a background modelling method is not sufficient 
for effective background subtraction. In practice, many 
issues such as shadows, illumination changes, dynamic 
scenes etc. should be considered in designing a complete 
system. In this section, describe such a system employing 
SACON as a core. 

4.1 Overview of the Framework  
The major components are shown in Figure 1. 

 
Figure 1. Block diagram of the complete framework. 

Key additional elements include a Foreground Mask (FM) 
and a Time Out Map (TOM - see section 4.2.4). FM is 
used to mark foreground (FG) pixels. TOM is used to 
record the consecutive times that a pixel is marked as a 
FG pixel. As Figure 1 shows, the proposed framework 
mainly contains three phases. In the first phase, the 
adjacent frame difference method [10] is employed to 
extract possible foreground pixels. However, if the 
background includes dynamic parts, these pixels may 
belong to background. This issue will be solved in the 
next phase. In the second phase, we feed the possible 
foreground pixels, and also the pixels whose TOM values 
are larger than a value, as well as the background 
samples, to SACON. The output is the detected 
foreground (FG) pixels. Only the FM of the pixels from 
the first stage is updated at this stage. However, there may 
be holes inside the foreground regions (see section 4.2). In 
the third phase, we validate the pixels inside the holes of 
the detected FG regions, and we update the background 
samples and the TOM. The details of the procedure are 
given in the following sub-sections. 

4.2 Shadow Removal and Related Issues  
RGB color space is sensitive to the change of illumination 
thus employing RGB color space may cause incorrect 
labelling of shadows as foreground pixels. 
When shadows appear, although the illumination part may 
change dramatically, it is usually assumed that the 
chromaticity part at the pixel is not significantly changed. 
Normalized color has been used in many background 
modelling methods, such as in [3, 5, 13, 14], to take 
advantage of this. The normalized chromaticity 
coordinates can be written as: 

               
/( )
/( )
/( )

r R R G B
g G R G B
b B R G B

= + +
= + +
= + +

                         (6) 

(Note: we scale r, g, b to the range [0, 255], assuming the 
8 bit image value in each channel is used). 
However, the loss of the intensity information can be a 
problem so some papers (such as [5, 13, 14]) promote ( r, g, 
I) coordinates 
Let (rb, gb, Ib) be the observed value of a background pixel 
xb and (rt, gt, It) be the observed value at this pixel (i.e., xt) 
in frame t. If the background is totally static, we can 
expect / 1t bI Iβ ≤ ≤ when the pixel is covered by shadow 
and 1 /t bI I γ≤ ≤ when the pixel is highlighted by strong 
light. Thus, the shadow can be suppressed if the 
following two conditions hold: 
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where ,β γ are constant and are chosen empirically and 
Tn, is set as described in section 4.2.2.  
If the background is dynamic and includes multiple 
modes at pixel m, we compute the sample consensus by 
checking how many data points of the N background 
samples satisfy Equation (7), if the number is larger than 
Tn, we label Bt(m) in Equation (5) with value 1.  
However, there are three problems related to Equation (7):  
1) When the intensity I is small, the estimated 

normalized color (r, g, b) can be very noisy. This is 
because of the nonlinear transformation from the 
RGB space to the normalized rgb color space in 
Equation (6); 

2) Deciding how to set an effective value for Tr, which 
is also effective for other image pixels, is hard.   

3) When the chromaticity component of the foreground 
pixel is similar to that of the background pixel, but 
the intensity component difference is relatively large 
(e.g., the absolute difference of It and Ib is large, 
however /t bI Iβ γ≤ ≤ is still satisfied), the 
foreground pixel may be wrongly labelled.  

We address these issues in the following subsections. 
 

SACON Samples of 
background 

Video 

FG pixels 

Hole pixels validation 

Connected 
Component Analysis 

FG regions 

Output 

Adjacent 
Frame difference 

Pixels to deal with

TOM 

Background 
updating 
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4.2.1 Normalized Color Noise 
Figure 2 (a) shows one frame of the image sequence 
“Light Switch” (LS) in the Wallflower dataset [10]. We 
selected three hundred frames (frame 1001 to 1300) of LS 
where the light was switched off. Except for rolling 
interference bars on the screen, the rest of the pixels 
remain static. From Figure 2 (b) and (c), we can see that 
when the intensities of image pixels in Figure 2 (a) are 
low, the estimated standard variances of both r channel 
and g channel are high (corresponding to bright pixels in 
Figure 2 (b) and (c)). This means that the estimated r and 
g values are very noisy when the intensity values are low. 

  
(a) (b) (c) 

Figure 2. (a) One frame of LS; Images showing the 
standard variance of the red channel (b) and the green 
channel (c) in the normalized rgb color space over 300 
frames of LS.  

 
To solve this problem, we only use I when the intensity I 
of the pixel is lower than a threshold (Itd): 

        ( , , )
( )
r g I if I Itd

x
I if I Itd

≥
=  <

                      (8) 

 
4.2.2 Setting the Value of Tr 
 

  

  
(a) (b) (c) 

Figure 3. (a) One frame of the videos; the detected 
foreground pixels by (b) setting a global value to Tr and 
by (c) setting the values of Tr for each pixel according 
to Equation (9).    

 
There are two possible ways to set the value of Tr. The 
first is to empirically set a global value of Tr for all pixels. 
To obtain an efficient value of Tr for all image pixels is 
hard. The second way is to estimate the standard variance 
σ and set Tr equal to ησ, (where η is usually set as 2.5 or 
3). However, the estimated σ may be overestimated when 
the data is multi-model distributed.  
We set Tr by combining the above two ways as follows:  

1= min ( , )rT T ησ                          (9) 
where T1 is a constant (We will discuss the influence of T1  
on the results in section 6).  
From Figure 3, we can see that when we set a global Tr, 
some parts (e.g., part of the trousers of the person in the 
first row and the shirt of the person in the second row) of 
the foreground objects are not successfully detected. In 
contrast, when we set the various values of Tr for each 
pixel according to Equation (9), most of the foreground 
pixels are correctly detected (Figure 3c ). 
 
4.2.3 Validation of Pixels inside Holes 
When a foreground object has similar color to the 
background scene, there may be holes in the detected 
foreground regions (i.e., the foreground pixels inside the 
holes are wrongly labelled as background pixels). Let us 
consider Equation (7), although /

t b

I Ix xβ γ≤ ≤  can be 
used to suppress shadows, the intensity information is also 
“damaged” to some extent. If the chromaticity component 
of foreground pixels is similar that of background pixels, 
the difference of the intensity part is large but still within 
the range of /

t b

I Ix xβ γ≤ ≤ (this is notable especially when 

b

Ix is large), the pixels are wrongly marked. For these 
pixels, however, we can not simply use some hole filling 
techniques to remove the holes, because these holes may 
also be caused by the structure of the foreground object or 
the posture of a human being. Thus, we use a validation 
procedure to recheck the pixels inside the holes. For these 
pixels inside the holes, we use 

t b

I I
Ix x T− ≤ (where IT is a 

threshold for intensity channel), i.e., if the condition is not 
satisfied, we mark the pixels of the holes as foreground 
pixels; otherwise, we mark the pixels as background pixels.   

 
(a) (b) (c) 

Figure 4. An example showing foreground hole pixel 
validation. One frame of C (a); The results without (b) 
and with (c) the validation procedure.  

 
Although the validation can not correct wrong labels of 
foreground pixels when the color of these pixels is very 
similar to the background, it can improve the results 
obtained by Equation (7). Figure 4 shows us an example. 
One frame of the image sequence “Camouflage” (C) in 
the Wallflower dataset is shown in Figure 4 (a). The 
person walked into the room and stood in front of a 
monitor which has similar color (on the screen) to the 
person’s dress. Figure 4 (b) shows the result without the 
validation procedure. We can see there are a number of 
holes inside the foreground object, which are wrongly 
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marked as background pixels. Figure 4 (c) shows the 
result after applying the validation procedure. From 
Figure 4 (c) we can see that most pixels inside the holes 
are correctly marked as foreground pixels.  
 
4.2.4 Updating Background Samples 
When the background scene changes, the background 
samples should be updated to reflect the change of the 
background scene. Generally speaking, the background 
samples should be updated so that the background model can: 
•  adapt to light condition changes such as gradual 

illumination changes; 
•  adapt to moved or inserted background objects to the 

background scene.  
•  adapt the foreground objects, which remain static for 

a long time, to the background scene (e.g. in [19]). 
There are several methods to update the background 
samples [13, 20]. The simplest method is to blindly add 
each pixel of the current frame to the background scene. 
However, this method also adds the foreground pixels to 
the background samples. Another simple but more 
efficient method is to selectively add only pixels marked 
as background pixels to the background model while 
neglecting the foreground pixels. This method is efficient 
in gradual illumination changes. However, the method 
also causes some problems: for example, if a background 
object is moved to a new place, or if a new background 
object is inserted to the background scene, the method can 
not adaptively add the corresponding pixels of the 
background object to the background model.  
We use a selective update mechanism to update the 
background samples. To incorporate the moved/inserted 
background object or static foreground object t into the 
background model, we use a Time Out Map (TOM). Let 

( )tTOM m be the time out map at pixel m at frame t. We 
have:  

1( ) ( ) 1 ( ) 0
( ) 0

t t t

t

TOM m TOM m if B m
TOM m otherwise

−= + =
 =

    (10) 

Equation (10) shows that the TOM is used to record how 
long (how many frames) a pixel is continuously classified 
as a foreground pixel. Once the pixel is classified as a 
background pixel, the TOM value of that pixel is set to 
zero. When the value of TOM at a pixel is larger than a 
threshold TTM, that pixel will be assigned to the background 
(the pixel of the object has remained in place too long).  
However, we find, in some cases, pixels of moving 
objects, are also incorporated to the background. Figure 5 
(b) shows such an example. In the image sequence 
“Moved Object” (MO) in the Wallflower dataset, a person 
entered into a room, moved the chair and sat in the chair. 
While he made phone call, he turned around in the chair. 
There is an overlapped region around the center of his 
body. The TOM values of the pixels of the region keep 
increasing because the pixels keep being marked as 

foreground pixels at each frame. Thus, when the TOM 
values are increased to be larger than TTM (i.e., after a long 
time), these pixels are added to the background model. 
  

 
(a) (b) (c) 

Figure 5. (a) A frame of MO; Results obtained by 
updating at pixel level (b) and combination of pixel and 
region level(c).   

 
To further improve the above modification, we update the 
background samples at both pixel level and region level. 
For pixels of moved background or static foreground 
objects, who are connected to large numbers of such 
pixels., we treat these pixels at region level instead of at 
pixel level (using Equation 10).  
We judge if an object is moving or static by two criteria: 
the center of the object and the number of the pixels of the 
object. If either changes by an amount larger than a 
threshold, we judge the object is moving. Otherwise, we 
judge the object is static. If an object is judged static, we 
increase the TOM value of all pixels of that object by 
one; if an object is judged moving, we set the TOM value 
of the pixels of that object to zero. If the TOM value of an 
object is higher than TTM, we add the all pixels of the 
object to the background samples. Figure 5 (c) shows the 
result obtained by background sample update at both pixel 
and region level. We can see the pixels at the center part 
of the person are correctly marked as foreground pixels.  
 
5. Experimental Comparisons 
Toyama et. al. [10] benchmarked their algorithm 
“Wallflower” using a set of image sequences where each 
sequence presents a different type of difficulty that a 
practical task may meet. The performance is evaluated 
against hand-segmented ground truth. In this section, we 
will evaluate our method using these image sequences and 
compare the performance of our method with that of five 
state-of-the-art methods.  
A brief description of the Wallflower image sequences follows: 
Moved Object (MO): A person enters into a room, 
makes a phone call, and leaves. The phone and the chair 
are left in a different position. Time of Day (TOD): The 
light in a room gradually changes from dark to bright. 
Then, a person enters into the room and sits down. Light 
Switch (LS): A room scene begins with the lights on. 
Then a person enters the room and turns off the lights for 
a long period. Later, a person walks in the room, switches 
on the light, and moves the chair, while the door is closed. 
The camera sees the room with lights both on and off 
during the training stage. Waving Trees (WT): A tree is 
swaying and a person walks in front of the tree. 
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Camouflage (C): A person walks in front of a monitor, 
which has rolling interference bars on the screen. The bars 
include color similar to the person’s clothing. Boostrapping 
(B): The image sequence shows a busy cafeteria and each 
frame contains people. Foreground Aperture (FA): A 
person with uniformly colored shirt wakes up and begins 
to move slowly.   
For the evaluation of performance against each image 
sequence, we use three terms: False Positive (FP), False 
Negative (FN), and total error for that image sequence 
(te). FP is the number of background pixels that are 
wrongly marked as foreground; FN is the number of 
foreground pixels that are wrongly marked as 
background; te is the sum of FP and FN for each image 
sequence. For the evaluation of overall performance, we 
use TE (the sum of total error for all seven image 
sequences) and TE* (the sum of total error excluding the 
light switch image sequence). 
For each  result image, we eliminated the foreground 
pixels whose 4-connected foreground pixels number less than 8.  
Figure 6 and Table 1 show the results obtained by 
SACON, and five other state-of-the-art methods. From 
Figure 6 and Table 1, we can see that our method 
achieves the most accurate overall performance on TE 
and TE* among the six competitive methods. SACON 
also obtains the best results of total error (te) for image 
sequences of MO, TOD, WT, C and B. For MO sequence, 
the Eigen background model achieves the most inaccurate 
result, while other methods obtain same (or similar) 
result. For LS sequence, the Wallflower (with maintaining 
background at frame level) achieves the least total error. 
For FA sequence, the Wallflower achieves the most 
accurate result. However, the authors of [10] used a 
region-level processing as a post-processing step for 
Wallflower. Although SACON uses a step of validation of  
pixels inside the foreground holes, it is at pixel level.  
 
6. The Influence of the Parameters  
There are two parameters that are crucial to SACON: the 
value of T1 (in Equation 9) and the number of the 
background samples at each pixel. In this section, we 
investigate the influence of these two parameters on the 
results of SACON. We evaluate the results by TE* and 
corresponding total error (te) for each of the image sequences. 

6.1 The Influence of T1 on the Results of SACON  
We change the value of T1 from 2 to 30, with interval 1.  
We test the total error of each image sequence for 
different T1 value. From Figure 7, we can see that when 
the value of T1 varies, the influence on the results for various 
types of image sequences is different: for example, with 
the increase of T1 value, the total error (te) increases for 
FA and C, remains stable for MO, and fluctuates for WT, 
B, and TOD image sequences. The fluctuation of the te 
for B image sequence is relatively large, while relatively 

small for other image sequences. For the overall performance 
(see Figure 7 (b)), we can see that TE* fluctuates with the 
increase of T1. Moreover, TE* is relatively stable when T1 
is lager than eight. However, the fluctuation is within a 
reasonable range: even the highest TE* value is still less 
than that of the other five comparative methods. 

(a) (b) 
Figure 7. Plot of (a) total error (te) and (b) TE* vs 
different T1 values.  

 

6.2 The Influence of Background Sample Number 
on the Results of SACON 

Because our method is based on sample consensus, the 
number of the background samples N is crucial to the 
performance of our method. It is desirable to investigate 
the influence of the background sample number N on the 
results of SACON. 

 
                         (a)         (b)                        

Figure 8. Plot of (a) total error (te) and (b) TE* vs different 
background sample number. 
 
We use the same set of image sequences as those used in 
the last subsection. We use various numbers of 
background samples, and N changes from 20 to 200, with 
interval 10. 
From Figure 8 (a), we can see that the influence of the 
sample number is small on most image sequences, except 
for image sequence B, where there is relatively large 
fluctuation in total error (te). Figure 8 (b) shows the 
overall performance on various N. We can see that when 
N is less that 50, TE* increases with the decrease of N. 
However, when N is larger than 50, TE* remains 
relatively stable. 
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Methods ET MO TOD LS WT C B FA TE TE* 
f. neg. 0 236 589 41 47 1150 1508 
f.pos. 0 147 1031 230 462 125 521 SACON 

te 0 383 1620 271 509 1275 2029 
6087 4467 

f. neg. 0 772 1965 191 1998 1974 2403 
f. pos. 1 54 2024 136 69 92 356 Tracey LAB 

LP 
te 1 826 3989 327 2067 2066 2759 

12035 8046 

f. neg. 0 1008 1633 1323 398 1874 2442 
f. pos. 0 20 14169 341 3098 217 530 Mixture of 

Gaussian 
te 0 1028 15802 1664 3496 2091 2972 

27053 11251

f. neg. 0 1018 2380 629 1538 2143 2511 
f. pos. 0 562 13439 334 2130 2764 1974 Bayesian 

decision 
te 0 1580 15819 963 3668 4907 4485 

31422 15603

f. neg. 0 879 962 1027 350 304 2441 
f. pos. 1065 16 362 2057 1548 6129 537 Eigen-

background 
te 1065 895 1324 3084 1898 6433 2978 

17677 16353

f. neg. 0 961 947 877 229 2025 320 
f. pos. 0 25 375 1999 2706 365 649 Wallflower 

te 0 986 1322 2876 2935 2390 969 
11478 10156

Table 1: Experimental results by different methods on Wallflower benchmarks. 

 MO    TOD        LS          WT         C B FA 

Test Image 

   

Ground 
Truth 

   

SACON 

   

Tracey 
LAB LP 

   

Mixture of 
Gaussian 

   

Bayesian 
decision 

   

Eigen 
background 

   

Wallflower 

   
Fig. 6: Experimental results by several methods on the seven canonical background problems of the 
Wallflower benchmarks. The top row shows the evaluated frames of each image sequences; the second 
row shows the hand-segmented ground truth; the third row shows the results of SACON. The fourth 
row shows the results of Tracey reported in [11]]; the fifth to the eighth rows show the results reported in [10]]. 
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6.3 The Time Complexity 
The processing time of our method is affected to a 
relatively large extent by the number of the background 
samples N. Also, it is affected by the type of image 
sequences, the type of computing language, etc. Here, we 
provide a rough estimation the processing time of our 
method. We perform our method in MATLAB language 
(interfaced with C MEX) on a Laptop with Pentium M 
processor 1.6MGHZ. The averaged processing time for 
the seven Wallflower image sequences (120x160 color 
images) is about 10 frames per second when we set N 
equal to 100, and 6 frames per second when N is set to 
200. We notice that a relatively large part of time is used 
to transfer data (mainly background samples) between 
MATALB and C MEX.  Programming in complete C 
code with optimization will make the method faster.   
 
7. Conclusion 
In this paper, an effective and robust background 
modeling method (SACON) is proposed. The method 
may be applied in many practical environments and is 
effective in modeling a dynamic background. An effective 
framework is also proposed to apply SACON to 
background subtraction. The proposed method has been 
tested and validated by a significant number of 
experiments. SACON has proved to be robust in various 
environments (including indoor and outdoor scenes) and 
different types of background scenes such as dynamic or 
static scenes. We also numerically evaluate the 
performance of SACON with the Wallflower benchmarks 
and compare its results with those of five other popular 
background modelling methods. The comparisons show 
that SACON achieves very promising results. 
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