
Department of Electrical
and

Computer Systems Engineering

Technical Report
MECSE-23-2005

A survey of FPGA-based high performance computation in
molecular biology and other domains

T. Ramdas and G. Egan



A survey of FPGA-based high performance
computation in molecular biology and other

domains
Tirath Ramdas, Gregory Egan

Abstract— Molecular biocomputation workflows traditionally
involve days of compute time to align DNA/protein sequences.
Custom computing machines (CCMs) provide a means to dra-
matically reduce alignment time, and FPGAs provide a practi-
cal means to implement such CCMs. Software implementation
of some sequence alignment algorithms suffer quadratic time
performance, however CCM implementations may be highly
parallelized and consequently provide linear time performance.
Similarly, CCMs may be used to accelerate workflows or
operations in a wide range of domains, often dramatically
outperforming large scale clusters. Programming and integration
problems limit CCM usage, though progress has been made to
overcome these problems. With continued development of tools,
devices, and integration solutions, CCMs on FPGAs coupled to
conventional systems present an effective architecture for high
performance computing.

Index Terms— Field programmable gate arrays, parallel ar-
chitectures, pattern matching, programming.

I. INTRODUCTION

THE classical scalar von Neumann architecture has en-
dured due to its ability to provide adequate performance

and programmability for virtually any application. Neverthe-
less in many cases application specific designs will undoubt-
edly provide far superior performance. Economic concerns
have typically provided strong resistance against application
specific solutions, however programmable logic devices –
specifically Field Programmable Gate Arrays (FPGAs) – are
diminishing the veracity of such arguments. Traditionally used
merely as a prototyping technology for ASIC designs or glue
logic for incompatible devices and protocols, increasing chip
speed and increasing equivalent gate count have resulted in
FPGAs being adopted for use as computational engines in their
own right across a wide range of applications. In some appli-
cations, such as in the seismic and biocomputation domains,
custom computational devices have dramatically outperformed
large-scale clusters for specific applications [1][2][3].

While the success of FPGAs as custom computing machines
(CCMs) may be largely attributed to economic factors –
and even by itself this would not be a trivial contribution
– reconfigurability does offer some distinct advantages over
traditional ASIC solutions. With some applications, significant

Manuscript received 30 May 2005.
T. Ramdas {Tirath.Ramdas@eng.monash.edu.au} is with the Department

of Electrical and Computer Systems Engineering, Monash University.
G. Egan {Greg.Egan@eng.monash.edu.au} is the Director of the Center for

Telecommunications and Information Engineering, Department of Electrical
and Computer Systems Engineering, Monash University.

performance gains can be achieved by reconfiguration based
on data that is only available at run-time [4][5][6]. In addition,
it would be possible to swap hardware blocks in and out of
an FPGA in a sense similar to context-switching [7]. It is
also possible to fit multiple independent blocks within the
same FPGA device, provided IO resources are appropriately
allocated. Conversely an appropriately designed large block
may be broken into stages and deployed in pieces sequentially
on a smaller FPGA device, with interim computational results
held in external memory; this approach is adopted in [8] for
sequence alignment with small FPGA devices.

This paper surveys the state of the art in FPGA technology
for high performance computing (HPC), with molecular bio-
computation as a sample application domain. The nature and
demands of some biocomputation algorithms are discussed,
followed by a description of some existing biocomputation
machines, especially Smith-Waterman accelerators. There is a
critical need for better programming tools and methodologies
for reconfigurable computing, as well as high performance
integration for communication with a host machine and to a
lesser extent peer computing units – these and other future
development issues are discussed, followed by concluding
remarks.

II. COMPUTATIONAL MOLECULAR BIOLOGY

With the volume of available genetic data doubling every
six months, advances in conventional computing systems seem
unable to keep pace. Software heuristic approaches, such as
the Basic Local Alignment and Search Tool (BLAST), have
contributed greatly to overcoming this growing performance
deficit, however in the long-run even solutions such as these
will not be sufficient. Consequently, CCMs are increasingly
being coupled to conventional systems in order to accelerate
biocomputing workflows.

Computational molecular biology covers sequence analysis
as well as structure analysis, however this paper will focus
primarily on sequence analysis, or more specifically sequence
alignment, which is basically a form of pattern matching.
Sequence alignment algorithms arguably represent the most
important class of algorithms in molecular biocomputation.
The general idea is that comparing a genetic or protein
sequence against another sequence could reveal a level of
homology – i.e. how closely related the two sequences are
in an evolutionary sense – and could help determine the
function of new sequences. Revealing similarities between

1

MECSE-23-2005: "A survey of FPGA-based high performance computation in ...", T. Ramdas and G. Egan



protein sequences may also expose similar structural traits,
and therefore similar functionality in some regions of different
proteins.

The fundamental sequence alignment algorithms are
Needleman-Wunsch (NW) for global alignment and Smith-
Waterman (SW) for local alignment, with the latter being more
commonly used in biocomputation. While global alignment
seeks to determine the best match between two sequences
from one end to the other, local alignment seeks to determine
the best alignment between subsequences of the two query
sequences, and the latter turns out to be a more useful endeavor
in molecular biology [9]. Due to the computational complexity
of these algorithms, the BLAST tool, which is a heuristic
based local alignment tool, has gained widespread acceptance
by the biocomputing community despite the fact that BLAST
provides lower sensitivity than SW. Another approach to
sequence analysis is to use Hidden Markov Models (HMM),
which offer a probabilistic approach to homology detection.
A primer on sequence alignment is beyond the scope of
this paper, however a general performance-oriented view of
sequence alignment algorithms will be presented.

A. Smith-Waterman and Needleman-Wunsch

The NW and SW algorithms share many similarities – both
algorithms consist of three steps: initialization, matrix fill,
and traceback. Traceback reveals the optimal match alignment
between two sequences (or segments of sequences for local
alignment) based on each cell’s score, which is calculated at
matrix fill. NW and SW differ only in the traceback step. As
SW is a more commonly used algorithm than NW and the two
algorithms are so similar, the rest of this paper focuses on the
SW algorithm, with comparisons drawn with NW occasionally.

A matrix is constructed with one sequence lined up against
the rows of the matrix, and another against the columns,
with the first row and column initialized with some value
(usually zero) – i.e. if the sequences are of length M and
N respectively, then the matrix for the alignment algorithm
will have (M + 1) × (N + 1) dimensions. The matrix fill
stage scores each cell in the matrix: this score is based on
whether the two intersecting elements of each sequence are
a match, and also on the score of the cell’s neighbors to the
left, above, and diagonally upper-left. Three seperate scores
are calculated based on all three neighbors, and the maximum
score is assigned to the cell. This is done for each cell in the
matrix; doing so sequentially is therefore clearly an M × N
operation. Even though the computation for each cell usually
only consists of additions, subtractions, and comparisons of
integers, the algorithm would nevertheless perform very poorly
as the lengths of the query sequences become large.

At this point in the algorithm, a similarity score may be
extracted from the matrix that quantifies the level of homology
between the two sequences. To extract the optimum alignment
from the matrix, a traceback is performed. This entails follow-
ing the trail left behind from each cell to it’s preceding cell
in the matrix fill stage. One good way to achieve this is to
note during the matrix fill stage which neighbor each cell had
obtained it’s maximum score from – i.e. if it obtained it’s

maximum score from the upper, left, or upper-left cell. Up till
this point, the SW and NW algorithms are identical, however
they diverge when it comes to the way this information is
used. With NW the traceback starts at the last cell in the
matrix and traces the maximal score path back to the first cell.
With SW, traceback starts at the cell with the highest score in
the matrix and ends at a cell when the similarity score drops
below a certain threshold. The traceback stage is essentially
not computationally intensive, and furthermore most of the
work may be done during the matrix fill stage. One problem
to consider is how to organize and store the traceback path
data in an efficient manner, which is beyond the scope of this
paper.

Parallelization of SW workflows may be achieved on a fine
grained level or a coarse grained level. In practice, SW is often
run with one query sequence against a sequence database, and
in that scenario it is highly practical to distribute pairwise
SW alignments of different queries to multiple nodes, for
example in a commodity cluster. This coarse grained level
of parallelism achieves linear speedup.

Fine-grained parallelization – or parallelization of the SW
kernel in order to reduce O(N2) complexity – is complicated
by data dependencies whereby each cell cj,k depends on the
values of three neighboring cells cj,k−1, cj−1,k, and cj−1,k−1

– with each of those cells in turn depending on the values
of three neighboring cells, which effectively means that this
dependancy extends to every other cell in the region C≤j,≤k.
This implies that it is possible to simultaneously compute c1,3,
c2,2 and c3,1, since these cells fall outside each other’s data
dependency regions.

In simple terms, assuming a square matrix (i.e. N × N ,
with both query sequences being of length N ) and only
considering the upper left half of the matrix, the cells that
may be computed in parallel (i.e. the cells for which all data
dependancies are currently satisfied) are given by cx−y+1,y

for 1 ≤ y ≤ x and x ≤ N , which gives that x is the largest
row value of the current set of computable cells. From this
it may be concluded that the maximum number of cells that
may be computed in parallel is N . This model is mirrored
for the lower right half of the matrix. Expanding this model
for non-square matrices introduces some non-linearities, but
the parallelization implications remain the same. Given that
it takes x = N cycles to compute the upper left half of the
matrix, the lower right half would consume N−1 cycles, since
it would be redundant to recompute the cells where x = N .
Therefore, a parallelized SW would require 2N−1 operations,
or generalizing for non-equal query sequences of length M
and N , parallel SW requires M + N − 1 operations, i.e. an
O(N) implementation is possible.

However, parallel execution in this manner raises many
practical problems, as discussed in [10]. These problems
include:

1) Communication overheads – In order to satisfy data
dependencies across all processing elements, the value
of each cell once computed must be broadcasted to the
corresponding neighbor processing elements. Although
the communication overheads are somewhat limited
due to the locality inherent in the algorithm from the

2

MECSE-23-2005: "A survey of FPGA-based high performance computation in ...", T. Ramdas and G. Egan



Fig. 1. A sample similarity matrix for two sequences, with bounding boxes
indicating which cells are computed in parallel. The arrow indicates the
direction in which the computation progresses, i.e. from top to bottom with
the cells in the bounding boxes being simultaneously computed in each cycle.
A total of 11 cycles are required for this computation, and a maximum of 5
cells may be computed in parallel.

perspective of each cell (i.e. each cell depends only
on three adjacent cells), the fact that each cell in each
cycle requires very simple computation but is dependent
on data present on other cells places a lot of pressure
on the communications infrastructure, and consequently
processing bottlenecks would very often be due to
communication limitations.

2) Load balancing – It would be possible to break the
matrix down into smaller sub-matrices for computation
across several nodes, however data dependancies must
still be satisfied. Furthermore, as the number of available
computations varies at each step efficient use of available
processing elements would require that the number of
cells allocated to each processing element vary at each
cycle in the computation, and this would introduce some
additional complexity into the parallelization.

Some actual implementations parallelize the algorithm in
sub-optimal ways in order to simplify some aspects of the
overall design, for example in [11] parallel processing occurs
parallel to the query sequence as opposed to parallelizing
along the diagonal of the matrix, though in any parallel
implementation data dependancies must be satisfied.

Parallel SW may be implemented utilizing Single Instruc-
tion Multiple Data (SIMD) vector processing technologies
present in contemporary CPUs such as Intel’s Streaming SIMD
Extensions (SSE), and up to six-fold speed-up over the base
hardware (i.e. not exploiting SIMD facilities) may be achieved
in this manner [11]. Large scale cluster computation is often
adopted for sequence alignment, and a 120 node computational
cluster, with a carefully crafted parallelization of SW, has been
shown to yield a 90-fold speed-up [10]. While these levels of
speed-up are valuable (especially in the case of utilizing SIMD
technology, as such approaches usually require no additional

expense), much higher speed-up factors may be obtained
with CCMs (for example, a 330-fold speed up over desktop
workstation performance was noted in [8]), and without the
overheads associated with computational clusters (such as
power requirements and system management/monitoring).

CCM’s may be deployed on ASICs or FPGAs, and Smith-
Waterman implementations have been demonstrated for both
technologies. However, FPGA based solutions are more prac-
tical. There are many FPGA-based Smith-Waterman hardware
accelerator designs available [3][5][6][8][12][13][14], and this
paper will focus on aspects of these designs. Some SW
implementations attempt to compute a maximum score, while
some compute a minimum penalty – while the detailed design
of each processing element may vary slightly, the overall ar-
chitecture of each processing element and the manner in which
the elements are integrated, and consequently the behavior
of the system, is the same regardless of which approach is
adopted.

B. BLAST

The BLAST algorithm makes the assumption that matched
alignments will contain short stretches of perfect matches;
therefore, once these stretches are identified it would be
possible to extend away from these matches in search of
a longer alignment. This approach works reasonably well
when the query sequences exhibit a high degree of similarity,
but BLAST struggles with dissimilar sequences. Nevertheless,
FPGA based acceleration hardware exists for the BLAST algo-
rithm as well [3][16][17]. It should be noted that while BLAST
provides a computationally inexpensive alternative to sequence
alignment over Smith-Waterman, the memory requirements are
far greater. As processor performance improvements surpass
memory performance improvements, this is likely to become
a non-trivial problem.

C. Hidden Markov Models

As a software implementation, BLAST enjoys far better
throughput than SW because BLAST does not attempt to
be exhaustive; a heuristic approach is adopted that only
fails with highly dissimilar query sequences. Similarly, the
Hidden Markov Model approach provides a probabilistic –
and non-exhaustive – tool for sequence analysis. A Hidden
Markov Model may be thought of as a probabilistic state
machine. Speech recognition is a very well-known application
of Hidden Markov Models, and in fact FPGA based HMM
accelerators for speech recognition have been implemented,
such as in [19] where a 40 times speedup over a pure
software implementation was achieved. The HMM approach
to sequence analysis requires a set of unaligned sequences that
are related as training data, from which a probabilistic model
is built. This model may then be used to perform multiple
alignments. The HMM approach is useful as it can categorize
an entire family of sequences, however the effectiveness of
this approach is often limited by the training data provided.
Commercial FPGA based hardware accelerators for HMM
based molecular biocomputing have also been provided by
[3].

3

MECSE-23-2005: "A survey of FPGA-based high performance computation in ...", T. Ramdas and G. Egan



Fig. 2. A typical SW processing element, corresponding to a cell in the
matrix. The inputs w, x, y and z are constant parameters of the SW algorithm.
Only scoring is depicted in this diagram; in a full fledged implementation there
needs to be a mechanism to indicate which input cell the score originated from,
so that traceback may be performed.

III. CUSTOM COMPUTING MACHINES

As is the case with many matrix-based algorithms, systolic
arrays are an elegant and efficient approach to instantiating the
Smith-Waterman algorithm in hardware. When implemented
as software, the Smith-Waterman algorithm is implemented by
dynamic programming, and is therefore very computationally
expensive - specifically it is an O(N2) algorithm. However,
when implemented as hardware, massive parallelism achieves
O(N) performance.

Therefore, while custom hardware doesn’t come close to
the clock rates of current generation VLSI microprocessors, as
sequence length N becomes appreciably large the performance
of the custom hardware becomes vastly superior to a software
based solution. This is the general tenet behind moving certain
processes out of software and into hardware.

A. Smith-Waterman

When implemented as parallel hardware, the SW algorithm
is usually implemented with a systolic array. A systolic array
is made up of a set of processing units that are connected
to a small number of neighbours in a mesh-like topology.
In this case, as is usually the case with systolic arrays, the
array is homogeneous – i.e. all the processing elements are
identical – and according to the SW algorithm as previously
described, each element is connected to three other elements,
corresponding to the upper, left, and upper-left neighbors in the
matrix. Each processing element needs to perform additions,
subtractions, and comparisons of integers in order to determine
the cell’s maximum score. Individual implementations may
vary, but basically the only hardware function units required in
each processing element would be integer adders, comparators,
and multiplexors.

One of the main challenges in the parallelization of SW
is to do with communication requirements – the result of the
computation of each cell needs to be communicated to it’s

three dependent neighbors. While this poses some problems in
a commodity cluster, it is far less of a problem in a single-chip
system like an FPGA-based implementation. Furthermore, the
systolic array architecture suits this kind of computation very
well.

However, while general purpose computers often have am-
ple amounts of main storage, CCM boards typically do not
have very large amounts of storage. If two very large and
highly similar sequences are aligned, a large number of scores
must be stored, and in addition very high similarity scores in
many parts of the matrix are to be expected, and storage for a
large range of values (from 0 to n) must be considered. The
maximum score would be obtained if two identical sequences
are aligned, in which case n ∝ N . A basic fixed-length
unsigned integer storage approach would require an O(log(n))
word size. Furthermore, n also impacts the size of each
processing element, which would have to add and compare
scores with comparators and adders of O(log(n)) bit width.

A more efficient storage approach is noted in [15]. Given
the nature of the algorithm, it can be seen that the difference
in scores of adjacent cells will not be very large (i.e. only
low order bits will vary between neighbours) and therefore
a modulo encoding scheme may be used. Such a scheme
would work very well if the parameters of the algorithm –
which determine the magnitude to which neighbouring scores
may vary – are small values. Fortunately, this is typically
the case for SW usage in molecular biology. By setting the
SW parameters accordingly, it is possible to adopt a modulo
4 O(1) encoding scheme, and therefore limit the word size
for score storage and adding/comparing to a constant 2 bits
for any sequence length N . Some implementations reduce
this to a single bit, however these implementations are very
rigid in terms of SW parameters. This approach is adopted in
[5][6][8][12] and [14].

Some implementations, such as [5] and [6], utilize run-
time-configuration to generate more efficient hardware. Some
constants that are determined at run-time (i.e. parameters
of the algorithm) are embedded into the logic in order to
obtain customized constant adder circuits. In addition, by
embedding one of the query sequences in the logic, customized
comparators may be obtained. These efforts result in smaller
and faster processing elements. Specifically, in terms of look-
up-tables (LUTs) and flip-flop pairs, savings of approximately
a factor of 5.5 have been attributed to run-time reconfiguration
[6].

One of the most successful implementations [5] utilizes an
FPGA board with a Xilinx XC2V6000-4 device and multiple
memories attached. Ten SRAM chips are attached, in addition
to 512MB PC133 SDRAM (accessible by the host com-
puter), as well as some RAM that is dedicated for run-time-
configuration data. The board communicates with the host PC
via 64-bit 66MHz PCI, which is quite a restrictive interface,
however the interface is only needed to transfer query data and
FPGA configuration data to the CCM board, after which the
computation is contained within the board. This configuration,
with an implementation that exploits run-time-configuration,
holds 7k processing elements and is capable of 1260 billion
cell updates per second (CUPS). In practical terms, this

4

MECSE-23-2005: "A survey of FPGA-based high performance computation in ...", T. Ramdas and G. Egan



solution is capable of aligning a 47MB database in less than
0.44s with linear scalability.

Other implementations have shown similarly impressive
results. Implementations that use run-time reconfiguration are
especially powerful, with the implementation presented in [6]
providing 757 billion CUPS with a Xilinx XCV1000-6 FPGA,
which holds 4k processing elements. An XC2V6000-5 FPGA
on the same implementation would be capable of holding
11k processing elements and provide 3.2 trillion CUPS. Im-
plementations that do not use run-time reconfiguration also
provide very high performance, such as presented in [14]
which uses a Xilinx XCV1000-6 to hold 4032 processing
elements (where this number was specifically chosen for floor-
planning purposes) to achieve 742 billion CUPS.

B. BLAST

BLAST consists of far more complex control paths com-
pared to SW. Therefore, a simple and obvious CCM design to
execute BLAST in it’s entirety is not apparent. One attempt
at a BLAST acceleration CCM [16] began by profiling the
BLAST program (using the Unix gprof tool) to identify
bottlenecks in the program, which may turn out to be good
candidates for CCM based acceleration. This is a common first
step in many cases where a CCM implementation to accelerate
some problem is not obvious, and may be performed with other
program profiling tools as well, such as Apple Computer’s
Shark tool which was used in [23].

A code segment of BLAST that accounted for 75% of
the execution time was identified in [16]. This code segment
performs lookup table indexing and referencing. Clearly, this
is a far different computational kernel than sequential SW
– where sequential SW performance is compute-bound, the
performance of the kernel of the BLAST algorithm is IO-
bound. The fact that the profiling tool indicated this kernel as
being the bottleneck in the algorithm would therefore reflect
limitations of the memory system rather than the processing
engine, and implementing this kernel alone in a CCM with
the rest of the algorithm being run on a host machine is
unlikely to provide any reasonable performance gains. To
further aggravate the situation, the communication with a host
system in [16] was severely limited, as a 33MHz PCI interface
was used.

Nevertheless, such a CCM was implemented. The kernel is
implemented in hardware with two state machines. The first
state machine – the input side state machine – reads query
character data and generates LUT index addresses (with the
LUT stored in off-chip SRAM), as well as writing some related
data into a FIFO. The second state machine – the output side
state machine – retrieves data from the LUT and pops data
off the FIFO. It was found that the performance of the system
was significantly slower than a pure software approach, and
this performance deficiency was attributed to communication
overheads between the CCM and the host system.

A more successful implementation is presented in [17],
where it was was shown that 4 instances of the described
CCM perform 10 times faster than a 128 node 667MHz
CPU cluster (and a 40 times improvement is claimed as a

price-performance ratio). This implementation makes similar
observations regarding the bottleneck in the system as in
[16], however far more effort is put into optimizing memory
efficiency. State machines are implemented in [17] which are
similar to [16], however in [17] the entire BLAST algorithm is
implemented as a CCM. The fundemental difference between
the two approaches [17] and [16] is that a very high throughput
low-latency memory subsystem is provided in [17]. Each
FPGA in the system has 4 independent DRAM channels,
providing 12.8GBps aggregate peak memory bandwidth. In
contrast, the resources made available to the CCM in [16] were
relatively deprived, which resulted in an inordinate amount of
communication with the host system, the expense of which
was further compounded by a very meager interface.

A BLAST acceleration CCM is also commercially available
[3], however details of this implementation are not publicly
available. Nevertheless, performance numbers for the system
have been released, and impressive claims have been made,
such as a 216 hour job on an 8 CPU cluster taking 16 minutes
on a DecypherBLAST engine.

C. Hidden Markov Models

The computationally expensive kernel in HMM sequence
analysis lies in the Viterbi algorithm, a dynamic programming
algorithm which scores and aligns sequences relative to a
HMM of sequences in a database. A higher score would indi-
cate that the query sequence is more probabilistically related
to the other sequences in the database for the corresponding
model. Biologically motivated HMM CCMs are not as com-
mon as SW or BLAST CCMs. Commercial implementations
are available, such as from [3]. Very impressive performance
claims have been made about the DeCypher accelerator; HMM
analysis of approximately 1000 models takes approximately 9
hours on a particular computer system, and when the very
same computation is run on the very same computer system
but with two DeCypher cards attached the computation takes
just 3 minutes.

One biologically motivated HMM acceleration CCM design
is presented in [18]. The system consists of several parts,
though the kernel of the system lies in the scoring block,
wherein lies the Viterbi algorithm. The implementation of this
stage is very similar to SW, i.e. it is basically a systolic array
scoring machine, where scores in this context are actually
probabilities. The algorithm requires multiplication of prob-
abilities, which are expensive in terms of computation but
also complicate implementation details, as multiplication of
small probabilities produce very small numbers that can lead
to underflow errors. To avoid these problems, the algorithm
is performed in log space, which would replace multipliers
with adders, and reduce the bit-width required to express
the range of probabilities. In spite of this, optimizations like
a modulo-encoding approach to bit-width limiting are not
obvious, and therefore implementations may be expensive in
terms of logic usage. Unfortunately, performance figures for
the system implemented in [18] were not available.

5

MECSE-23-2005: "A survey of FPGA-based high performance computation in ...", T. Ramdas and G. Egan



D. Other Applications

Besides molecular biocomputation, FPGAs have been suc-
cessfully used to accelerate other domains of computation.
FPGAs are an excellent medium for the implementation of
cryptogtaphy algorithms, as these algorithms are inherently
parallel and consist of bit-level operations, therefore cryptogra-
phy is one area that benefits greatly from custom computation
[2]. Content addressable memories are used to deploy high
capacity Intrusion Detection Systems [20]. Artificial neural
networks, which are massively parallel by nature, have long
been successfully implemented with FPGAs [21]. There are
many implementations of Java virtual machines on FPGAs,
but furthermore the parallelism and the freedom to use as
much FPGA space as is available allows the implementation
of multiple Java virtual machine execution paths in order to
provide multiprocessor capability to Java threads [22]; the
number of execution paths may be adjusted to fit the size of
the FPGA device. This line of thinking may even be applied
to VLIW processor designs [23]. Investigative use of FPGAs
has been undertaken on structural mechanics computations
[24]. Many diverse disciplines with computationally intensive
workflows are either deploying FPGAs as an integral part
of their work, or at least investigating the usage of such
technology.

The approaches mentioned above involve very application
specific designs, but a middle ground exists between highly
specific architectures and mainstream general purpose proces-
sors. Very often an existing processor architecture is adopted
for a certain application, but is augmented in some way to
better suit the application, for example by adding a single
bit conditional operation to the instruction set of a traditional
microprocessor design [25]. Alternatively, microprocessors
may be tightly coupled to external IP blocks. Another approach
may be to implement one stage of an application as a custom
design (e.g.: color thresholding) and another stage may be
implemented as software running on a standard or modified
RISC processor (e.g.: noise reduction code) with the two
stages communicating through shared memory [25]. These
design scenarios occur very frequently, and it is therefore
not surprising that CPU softcores such as Altera’s Nios and
Xilinx’s MicroBlaze are so commercially successful.

IV. FUTURE DEVELOPMENTS

The two largest stumbling blocks for wide spread adop-
tion of FPGA solutions across a wide range of application
domains are integration concerns, and development tools.
Integration limitations have the potential to severely limit
the impact CCMs could have on the overall performance of
some applications. Also, in order for custom computation
to be embraced by the larger computing community, new
programming methodologies that are less hardware-centric and
more algorithm-centric must emerge. Reconfigurable device
technology itself will not remain static; increasing logic re-
sources and speed will allow greater acceleration of demanding
workloads. Specifically within the computational molecular
biology domain, there is much work that may be done to
improve performance and functionality of CCMs.

A. Integration

The performance gains in using a CCM may be lost if
a large amount of time is required to transfer data between
the CCM and a host machine and/or other peer computing
units, as was the case in [16]. Therefore it is imperative that
high bandwidth, low latency interconnects be used to integrate
CCMs with host machines or other systems.

PCI, the de-facto commodity interface, is a relatively low
bandwidth, high latency shared bus, and is therefore generally
unsuitable for HPC acceleration. However, if a CCM is capable
of many orders of magnitude performance increase over soft-
ware running on a high-end CPU with minimal communication
with a host processor and/or other external device other than
for initial data loading – as is often the case in molecular
biocomputation algorithms – even PCI solutions yield mas-
sive performance gains [3][5]. Nevertheless, better integration
infrastructure is required to facilitate the use of CCMs for
a broader range of applications. Advances in commodity
integration standards, such as PCI-Express and PCI-X, will
yield important improvements (particularly in bandwidth) but
will be limited by economic and compatibility requirements
and would therefore not provide the ideal solution. For high-
end HPC systems proprietary interfaces capable of maximizing
the utilization of CCMs are provided.

Silicon Graphics addresses this need [26] in the Altix line
of HPC systems with a proprietary interconnect fabric – the
NUMALink interconnect (12.8GBps) – designed for system-
wide general purpose high performance scalability. Coupled
with a reconfigurable computing module which attaches to
the NUMALink fabric through a low latency Scalable Systems
Port (6.4GB/s), this solution provides high performance (i.e.
high bandwidth and low-latency) as well as scalability and
flexibility.

Cray’s XD-1 HPC systems [27] feature 6 FPGAs directly
connected to AMD Opteron CPUs thru the 3.2GBps RapidAr-
ray interconnect; this very tight coupling should result in very
low latency. 16MB caches are provided to FPGAs at 12.8GB/s.
While this solution doesn’t provide a tremendous amount of
flexibility, very tight coupling (and the resultant low-latency)
would allow for superlinear speedup of many applications
including applications with high communication requirements
with the host processor. Furthermore, run-time reconfiguration
where a CCM is broken into a series of blocks and deployed
consecutively on limited FPGA resources is highly practical
in such a system, and API hooks are provided to support these
activities at the application level.

B. Programming

While the idea of being able to take existing sequential C
code meant for software compilation and compiling it instead
for hardware deployment – often dubbed behavioral synthesis
– is a very tempting idea, it remains to be seen if this can
be done in a way that generates efficient hardware for a
wide set of applications. Extracting optimal parallelism from
software code is regarded as a computationally intractable
problem, though it may still be possible to obtain a sub-
optimal yet sufficient level of parallelism. Efforts to do so have

6

MECSE-23-2005: "A survey of FPGA-based high performance computation in ...", T. Ramdas and G. Egan



enjoyed limited success, such as [23][28][29] and [30] which
extract parallelism by means of an intermediary dataflow
graph, however such an approach would only produce good
quality results for certain sets of problems.

VHDL and Verilog have long been the two enduring hard-
ware description languages – traditionally used predominantly
for hardware documentation and simulation [31], but in recent
years used increasingly for hardware synthesis as well. These
HDLs afford the programmer very fine grained control over
the hardware that is synthesized. However, just as software
programmers moved away from assembly language and toward
higher generation languages in order to boost productivity,
so too shall hardware engineers move toward HDLs that are
more descriptive of algorithms and procedural behavior rather
than hardware function units [32], and this is true both for
reconfigurable hardware users as well as ASIC designers.

The move to C-like HDLs would only be reasonable if this
new breed of HDLs allows the production of designs that
exhibit reasonably good quality of result (QoR). In order to
achieve a good QoR, algorithm implementations must be par-
allelized, but furthermore designs must give due consideration
to timing factors. Such concepts are relatively alien to C-like
languages, but critical to the production of good hardware
designs. Furthermore, software programming languages afford
very little granularity in terms of variable and data path sizes
– this limitation cannot be present in HDLs, since hardware
designs can make use of arbitrary bus widths and register sizes.

It seems therefore that C-like languages may be adopted
for their familiarity and algorithmic efficiency, but that con-
structs must be provided that aid the production of high QoR
hardware designs. To this end languages such as Handel-C
[33] and Impulse C [34] provide language (including pre-
processor) constructs and semantics to explicitly enforce par-
allelism, build arbitrary width registers and datapaths, enforce
pipelining, etc. SystemC [35] achieves the same ends by
providing hardware constructs within class libraries. While
this puts some extra burden on programmers to work such
concepts into their designs, this is presently necessary for the
construction of reasonable QoR hardware designs. Further-
more, just as software programmers often implement some
critical kernel of their software in assembly language, very
often (especially while next generation HDLs remain in their
infant-to-adolescent years) designers will need to implement
critical aspects of a hardware design in a traditional HDL.

Example Handel-C code segments may illustrate some
constructs and semantics that were added to standard C in
order to allow for efficient hardware synthesis. Parallelization
may be explicitly declared using a ‘par{}’ block:

par{
a=b;
b=a;

}

In traditional sequential programming, the effect of the inner
block of the above code would be that both storage elements a
and b will take the value of b. However, the above instructions
execute in parallel, and consequently the effect is that the
contents of a and b are swapped. This is completed in a single

cycle because parallel hardware allows both operations to pro-
ceed simultaneously (with flip-flop writes typically occurring
at the end of a clock cycle, thus avoiding a race condition).

Efficient hardware designs also involve arbitrary width data
buses and arbitrary width register banks. Therefore, it is
necessary to provide mechanisms to select subsets of data
lines, and also to merge datalines. The append operator ‘@’
allows for arbitrary buses to be constructed from smaller buses:

bigbus = bus1 @ bus2 @ otherbigbus[31:27];

In order to select a subset of datalines in a bus, the bit selection
operator ‘[x : y]’ may be used. In the above example, bits
31-27 of otherbigbus are appended to all the bits on bus2,
and this larger bus is then appended to all the bits in bus1,
thus forming bigbus. These are just some of the more basic
facilities that must be provided by any high-level HDL.

Where an application may be decomposed into a set of
regular discrete functional units, a hardware implementation
could be produced by simply dropping functional units into
the design and linking them together appropriately. This ap-
proach may yield good results as each functional unit may be
obtained from a highly optimized library of functional units
– therefore each individual element in the design is itself
a very high quality design. The task of linking each unit
together to implement some algorithm is left to the designer.
This is the approach taken with the Viva [36] development
environment. A graphical drag-and-drop interface is provided
to express dataflow thru various functional units, and allows
rapid development of high performance custom solutions for
many applications such as [13] and [24].

While next generation HDLs promise greater productivity
for hardware designers, the present day reality may not reflect
this claim yet. Choosing a design strategy for any project
is dictated in large part by the availability of tools to get
the job done. While C-like HDLs may grant a designer the
ability to rapidly express a design, there are many more tools
required to get a design onto an ASIC or FPGA. This includes
tools for synthesis, place and route, timing analysis, visu-
alization and debugging, stimulus generation and response-
checking, simulation, and much more [31]. The electronics
design automation (EDA) industry has suites of mature and
tested tools for Verilog and/or VHDL designs, and these tools
allow for the detection and removal of potential problems
in designs very early in the design phase [31]. Also, EDA
tools for traditional hardware design methodologies are mature
enough that synthesis and other tools have reached a level of
sophistication that provides a very high QoR for generated
hardware. Nevertheless, where aspects of these tools need to
be rebuilt to accommodate new HDLs, new and/or updated
tools will likely emerge to support the new breed of HDLs. The
potential productivity gains far outweigh the costs of adapting
new design methodologies and tools.

Partial-reconfigurability is a feature present in many current
generation FPGAs, and as previously discussed this allows
for run-time-reconfiguration optimizations. It is conceivable
that such approaches may allow for efficient computation
of some computationally irregular programs, something that
is traditionally regarded as unsuitable for CCM deployment

7

MECSE-23-2005: "A survey of FPGA-based high performance computation in ...", T. Ramdas and G. Egan



due to the complex control paths, though whether or not
this may be feasibly done for a sufficiently large subset of
irregular problems remains to be seen. However, to some
extent, awareness of run-time-reconfiguration capability may
be built into HDLs to automatically exploit this capability.
Such capability would also allow the deployment of large
hardware blocks into limited configurable logic resources on
smaller FPGAs that support run-time-reconfiguration.

C. Reconfigurable Devices

While FPGAs are commonly thought of as a “sea of gates”,
the devices are not necessarily homogenous in nature. It is
common to include specialized circuitry within FPGAs to
provide better performance for some applications. Specifically,
hardware multipliers are often included so that FPGAs may
be used for high performance DSP applications.

Floating point circuitry consumes too much space on today’s
FPGAs to be regarded as a reasonable solution, however as
FPGAs continue to grow in size this limitation continues to
diminish. Furthermore, it has been argued that FPGAs are
improving in terms of floating-point performance at a greater
pace than contemporary VLSI CPU designs [37].

D. CCMs in Molecular Biology

Specifically within the domain of CCMs for computational
molecular biology, there is much room for further work. This
includes enhancing existing SW implementations by providing
more feature-filled solutions, and providing more alternatives
for BLAST and especially HMM CCMs. This paper has only
touched on the sequence analysis aspect of molecular biology;
the structural analysis aspect, the most famous facet of which
is protein folding, may also greatly benefit from CCM-based
acceleration.

1) SW CCMs: There has been a lot of success in imple-
menting basic SW CCMs that perform very well, and therefore
it would be practical to extend these designs and build more
sophisticated SW CCMs. Some possible extensions include a
run-time variable module encoding scheme, that can adjust
the widths of functional elements and storage words to match
the requirements of the input parameters, instead of dictating
a set of limited parameters that may be used. Also, instead
of simplistically computing matches between characters of
query sequences as identical match or no match, it would
be useful to allow for a gradient of scores for characters
that may be more or less matched, and similarly to allow
wildcards. This would, however, complicate the implemented
hardware substantially as a larger number of low-order bits
would be required to encode scores if a more fine-grained
level of scoring is to be allowed, which would consume far
more logic and storage resources. Nevertheless, such a system
may be sufficiently more useful in molecular biology to justify
the hardware costs. As FPGA device sizes continue to grow,
interconnect performance continues to improve, and storage
densities increase, processing elements of rising complexity
become less undesirable, provided the extra complexity pro-
vides extra functionality and/or performance.

2) Other sequence alignment: Thus far the bulk of CCMs
in the molecular biology domain have been SW implemen-
tations. This is understandable, given that SW can be imple-
mented as a CCM very cleanly and efficiently, and also be-
cause the performance gains over conventional general purpose
systems are often very dramatic. However, other algorithms
are also commonly used in molecular biocomputing. BLAST
is frequently used as an alternative to SW for performance
reasons; since a CCM implementation of SW yields linear
time performance, this tempts us to conclude that BLAST is
no longer required, since SW is a more rigorous algorithm
than BLAST. However, it may be the case that while BLAST
misses some matches that SW picks up, these distant matches
may not be biologically relevant. Furthermore, a BLAST CCM
may yield far greater sequence alignment capacity than a SW
CCM – a thorough consideration of CCM approaches to both
algorithms, especially with closely comparable benchmarks
of typical molecular biology workflows, would be valuable.
Hidden Markov Models provide some unique functionality
in computational molecular biology that aren’t immediately
provided by BLAST or SW (such as multiple alignment) and
therefore more effort into HMM CCMs may also prove to be
worthwhile.

3) Structural analysis: Protein folding simulation is very
computationally expensive, as it involves modeling inter-
atomic interactions at various levels of sophistication – ranging
from modeling each amino acid residue as a point particle in
a lattice structure, to quantum mechanical methods that model
electronic wave functions [38] – on a very fine time-scale.
It has been crudely estimated that in order to simulate 100
microseconds of actual protein folding requires computation
in the order of 1023 machine instructions – a computer capable
of petaflops per second would take over 3 years to perform
this computation [38]. Critical to the acceleration of such
workflows is the level of parallelism that may be extracted. In
[38] three broad approaches to parallelization are mentioned:

1) Each particle is bound to a hardware thread.
2) Each force term is bound to a hardware thread.
3) The problem space is divided spatially, with all the

forces on particles within a volume unit bound to a
hardware thread.

Each of these approaches has relative merits and applicability
for different situations, as discussed in [38]. The success of the
Folding@Home project suggests that such computations are
parallelizable to a significant extent, as super-linear speedup
has been achieved with the ensemble dynamics method for
some cases, and near-linear speedup is achieved in others [39].
The kernel of such computations consists of summation of
force terms, with each term relying on information from two
to four neighboring particles for different kinds of interactions
such as torsion, bending, etc. [38] – in a CCM implementation,
each term may be computed in parallel, with data exchanged
between neighboring processing elements. It should be deter-
mined if such a system could feasibly be deployed on a FPGA.

4) Performance comparison: While this paper has at-
tempted to indicate the relative performance improvements
yielded by various parallelization methods (i.e. SIMD vs
cluster vs CCM), this has been done with trepidation because

8

MECSE-23-2005: "A survey of FPGA-based high performance computation in ...", T. Ramdas and G. Egan



the performance numbers available in the literature are not
directly comparable. Some work into thoroughly benchmark-
ing different computation systems – i.e. single processor (or
SMP) workstations utilizing SIMD functions vs large scale
cluster (with each node also utilizing SIMD functions) vs
CCM – would be worthwhile, for such an exercise would lead
to better educated decisions regarding which system would
suit a particular workload (and budget) best.

V. CONCLUSION

By utilizing run-time-reconfiguration based on run-time pa-
rameters and data, it is possible to construct simpler and more
efficient hardware, and this may lead to tangible performance
benefits because the hardware constructed will likely perform
better in terms of propagation delay and other delays as
opposed to slightly more generic hardware, and furthermore
as the hardware produced will be smaller it would be possible
to fit more hardware on any given FPGA device. In the
case of SW CCMs, implementations that utilize run-time-
reconfiguration perform significantly better than fixed imple-
mentations. This is because processing elements are simpler,
and therefore run quicker. In addition, more processing ele-
ments may be deployed on finite FPGA logic resources.

There is the perception that FPGAs themselves are merely
the current generation realization of reconfigurable computing
– that “FPGAs are still only a first-generation embodiment of
the big idea of a general-purpose, reconfigurable substrate for
special-purpose computing” [32]. While it remains to be seen
what shape the next generation of reconfigurable computing
architectures will take, the current generation of reconfigurable
computing architectures are evolving both in terms of device
size and configuration (for instance, with the inclusion of
on-chip dedicated circuitry) but more importantly tools and
interconnects to better utilize reconfigurable computing are
growing in availability and sophistication.

CCMs are a viable solution for high performance computing
providing dramatic performance gains across many domains,
with molecular biocomputation being one such domain. Where
biocomputation workflows typically included days or weeks
of HPC server time to align sequences, CCMs can provide
relatively instantaneous access to alignment information.

Reconfigurable architectures combined with conventional
CPU architectures provide a platform for computational ef-
ficiency and elegance combined with the practicality of a
general purpose system, and such systems are likely to flourish
as development and integration overheads for such solutions
continue to decline.

REFERENCES

[1] Seismic Processing with Tricons Tsunami Suite Accelerated by Star-
bridge Hypercomputing, Starbridge: The Hypercomputing Company,
[online], http://www.starbridgesystems.com/resources/whitepapers2.html
(Accessed: 10 May 2005).

[2] Mitrion Applied, Mitrion – Unparalleled Computing, [online],
http://www.mitrion.com/applied.shtml (Accessed: 10 May 2005).

[3] DeCypher Performance, TimeLogic Home [online],
http://www.timelogic.com/performance/index.html (Accessed: 10 May
2005).

[4] A. Rudra, “FPGA-based applications for software radio”, RFDesign, pp.
24-35, May 2004.

[5] K. Puttegowda, W. Worek, N. Pappas, A. Danapani and P. Athanas,
“A run-time reconfigurable system for gene-sequence searching”, in
Proceedings of the 16th International Conference on VLSI Design, 2003,
pp. 561-566.

[6] S. Guccione, E. Keller, “Gene Matching Using Jbits”, in Proceedings
of the 12th International Conference on Field-Programmable Logic and
Applications, 2002, pp. 1168-1171.

[7] K. Puttegowda, “Context Switching Strategies in a Run-Time Recon-
figurable System”, M.S. Thesis, Virginia Polytechnic Institute and State
University, Blacksburn, Virginia, USA, 2002.

[8] Y. Yamaguchi and T. Maruyama, “High Speed Homology Search with
FPGAs”, IPSJ Transactions on High Performance Computing Systems,
vol. 43, pp. 196-205, 2002.

[9] R. Durbin, S. Eddy, A. Krogh and G. Mitchison, “Pairwise alignment”,
in Biological sequence analysis: probabalistic models of proteins and
nucleic acids, Cambridge University Press, 1998, pp. 22-23.

[10] W. S. Martins, J. B. Del Cuvillo, F. J. Useche, K. B. Theobald
and G. R. Gao, “A multithreaded parallel implementation of a dynamic
programming algorithm for sequence analysis”, in Pacific Symposium on
Biocomputing 2001, 2001, pp 311-322.

[11] T. Rognes and E. Seeberg, “Six-fold speed-up of Smith-Waterman
sequence database searches using parallel processing on common mi-
croprocessors”, Bioinformatics, vol. 16, pp. 699-706, 2000.

[12] D. T. Hoang, “A Systolic Array for the Sequence Alignment Problem”,
Brown University, Providence, Rhode Island, Technical Report CS-92-22,
1992.

[13] A Reconfigurable Computing Model for Biological Research
Application of Smith Waterman Analysis to Bacterial
Genomes, Starbridge: The Hypercomputing Company, [online],
http://www.starbridgesystems.com/resources/whitepapers1.html
(Accessed: 10 May 2005).

[14] C. W. Yu, K. H. Kwong, K. H. Lee and P. H. W. Leong, “A Smith-
Waterman Systolic Cell”, in Proceedings of the 10th International Work-
shop on Field Programmable Logic and Applications, 2003, pp. 375-384.

[15] R. J. Lipton and D. Lopresti, “A Systolic Array for Rapid String
Comparison”, in Proceedings of the Chapel Hill Conference on VLSI,
1985, pp. 363-376.

[16] K. Muriki, K. D. Underwood and R. Sass, “RC-BLAST: Towards
a Portable, Cost-Effective Open Source Hardware Implementation”, in
Proceedings of the Fourth International Workshop on High Performance
Computational Biology, 2005.

[17] C. Cheng, “BLAST Implementation on BEE2”, University of California,
Berkeley, Technical Report, 2004.

[18] S. Gupta, “Hardware Acceleration of Hidden Markov Models for Bioin-
formatics Applications”, M.S. Thesis, Boise State University, Idaho, 2004.

[19] S. J. Melnikoff, S. F. Quigley and M. J. Russell, “Implementing a Simple
Continuous Speech Recognition System on an FPGA”, in Proceedings
of the 10th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, 2002.

[20] L. Bu, J. A. Chandy,“FPGA Based Network Intrusion Detection using
Content Addressable Memories”, in Proceedings of the 12th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, 2004,
pp. 316-317.

[21] J. Zhu and P. Sutton, “FPGA Implementation of Neural Networks – a
Survey of a Decade of Progress”, in Proceedings of the 13th International
Conference on Field-Programmable Logic and Applications, 2003, pp.
1062-1066.

[22] J. Parnis and G. Lee, “Exploiting FPGA Concurrency to Enhance JVM
Performance”, in Proceedings of the 27th conference on Australasian
computer science, 2004, pp. 223-232.

[23] A. K. Jones, R. Hoare and D. Kusic, “An FPGA-based VLIW Pro-
cessor with Custom Hardware Execution”, in Proceedings of the 2005
ACM/SIGDA 13th international symposium on Field-programmable gate
arrays, 2005, pp. 107-117.

[24] R. Singleterry, J. Sobieski and S. Brown, “Field-Programmable Gate
Array Computer in Structural Analysis: An Initial Exploration”, in 43rd
American Institute of Aeronautics and Astronautics (AIAA) Structures,
Structural Dynamics, and Materials Conference, 2002.

[25] T. Ramdas, L. Ang and G. Egan, “FPGA Implementation of an Integer
MIPS Processor in Handel C and it’s Application to Human Face
Detection”, in Proceedings of TENCON 2004, 2004, pp. 36-39.

[26] Extraordinary Acceleration of Workflows with Reconfigurable
Application-specific Computing from SGI, White paper, Silicon
Graphics Inc., 2004.

[27] Application Acceleration with FPGA-Based Reconfigurable Com-
puting, (Cray Inc. - The Supercomputer Company), [online] 2005,

9

MECSE-23-2005: "A survey of FPGA-based high performance computation in ...", T. Ramdas and G. Egan



http://www.cray.com/products/xd1/acceleration.html (Accessed: 10 May
2005).

[28] T. J. Callahan, “Automatic Compilation of C for Hybrid Reconfigurable
Architectures”, Ph.D. dissertation, University of California, Berkeley,
California, USA, 2002.

[29] M. Budiu, S. Copen. Goldstein, “Pegasus: An Efficient Intermediate
Representation”, Carnegie Mellon University, Pittsburgh, Pennsylvania,
USA, Technical Report CMU-CS-02-107, 2002.

[30] Catapult C Synthesis, Datasheet, Mentor Graphics Corporation, 2005.
[31] J. L. Lee, “Back to the language roots”,

(Embedded.com), [online] December 2004,
http://www.embedded.com/showArticle.jhtml?articleID=55801140
(Accessed: 10 May 2005).

[32] I. Page, “Compiling software to gates”,
(Embedded.com), [online] December 2004,
http://www.embedded.com/showArticle.jhtml?articleID=55801142
(Accessed: 10 May 2005).

[33] Handel-C For Hardware Design, White paper, Celoxica Limited, August
2002.

[34] From C to FPGA, (C Programming Tools for FPGA Platforms), [online],
http://www.impulsec.com/C to fpga.htm (Accessed: 10 May 2005).

[35] S. Swan, “An Introduction to System Level Modeling in SystemC 2.0”,
White paper, Cadence Design Systems Inc., May 2001.

[36] Viva Software – A Graphical Programming Environment For FP-
GAs, (Starbridge: The Hypercomputing Company), [online] 2004,
http://www.starbridgesystems.com/products/vivatour.html (Accessed: 10
May 2005).

[37] K. Underwood, “FPGAs vs. CPUs: Trends in Peak Floating-Point
Performance”, in Proceedings of the 2004 ACM/SIGDA 12th international
symposium on Field programmable gate arrays, 2004, pp. 171-180.

[38] F. Allen et al., “Blue Gene: A vision for protein science using a petaflop
supercomputer”, IBM Systems Journal, vol. 40, pp. 310-327, 2001.

[39] S. M. Larson, C. D. Snow, M. Shirts and V. S. Pande, “Folding@Home
and Genome@Home: Using distributed computing to tackle previously
intractable problems in computational biology”, to appear in Computa-
tional Genomics, R. Grant, editor, Horizon Press, 2002.

10

MECSE-23-2005: "A survey of FPGA-based high performance computation in ...", T. Ramdas and G. Egan


