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Abstract 
 
This project has achieved the localization of a motorized wheelchair in an indoor 
environment. A camera, mounted on top of the wheelchair is the only sensor. The 
SIFT algorithm, which identifies images and objects irrespective of changes in scale 
and viewpoint perspective has been implemented. This algorithm has been used to 
obtain the wheelchair’s current position on a (previously built) topological map of a 
corridor in the environment. Each topological node on the map is associated with a set 
of (previously taken) pictures, stored in a database. The SIFT algorithm is used to 
compare the current picture from the camera to the pictures in the database. The best 
matched picture gives the current topological position of the wheelchair on the map. 
A Principal Components Analysis (PCA) based modification of the basic SIFT 
algorithm that reduces its dimensionality is discussed. A Hidden Markov Model 
modeling the transition probabilities from one topological node to another improves 
the robustness of the localization. 
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1. Introduction 
 
This project investigates the use of Computer Vision for Localization. The objective 
is to localize a motorized wheelchair in an indoor environment, by matching the 
current image from the wheelchair camera to prior pictures taken in that environment. 
The environment should not have been modified in any way to make the image 
matching easier. The mounting of a webcam on the wheelchair is the only 
modification made to it. The wheelchair is used as the mobile agent, because such a 
wheelchair is readily available at the IRIS Lab (a motorized wheelchair was one of the 
past projects of the organization) and because the testing of the system is much easier 
on a wheelchair. One can drive the wheelchair to different locations in the 
environment and take pictures. A laptop carried along by the person driving the 
wheelchair grabs the pictures from the webcam, runs the localization algorithm and 
displays the position of the wheelchair on an on-screen map.  
 

 

Camera 

Laptop 

 
Figure 1 Motorized wheelchair equipped with camera and laptop acts as the mobile platform for 

testing the localization algorithm 

 
 

MECSE-25-2005: "Vision-based indoor localization of a motorized wheelchair", P. Chakravarty



Localization using vision involves identifying landmarks in an environment, and 
ascertaining the wheelchair’s position with respect to the landmark. The visibility 
region for each landmark (the positions on the ground where the landmark is 
significantly visible) constitute topological nodes on a map that the position of the 
robot is localized to. The recognition of natural landmarks in images is essentially a 
problem of image matching (to a database of pre-stored images). A common approach 
to image matching involves the extraction of interest points from the image, 
calculating an image descriptor associated with each interest point (based on the local 
image characteristics) and matching these descriptors. The search for an image 
descriptor that is invariant to changes in scale, orientation, illumination and 3D 
camera viewpoint has been on for the last 25 years. The Harris Corner detector [1]  is 
one such interest point operator which works on the principle that at a corner, the 
derivative of the intensity gradient is large in perpendicular directions to each other. 
 

Zhang et.al [2] matched image regions around the Harris Corner detector by using 
a normalized cross-correlation function. A fundamental matrix describing the 
geometric relationship between 2 views of the scene was computed using the matched 
image points and outlying points (which did not match the majority solution) were 
removed. This method was effective in short-baseline stereo matching where there 
was not much disparity in the images. Schmidt and Mohr [3], in 1997 devised a 
rotationally invariant image descriptor that was calculated from an image patch 
around the Harris Corner points. But because the Harris corner points are not invariant 
to changes in scale, therefore, this method was also not invariant to scale. 
 

In 1999, David Lowe came up with the SIFT (Scale Invariant Feature Transform) 
algorithm [4]  which has, in the last few years gained increasing popularity for object 
and scene recognition [5-7]. It has been used, in combination with probabilistic 
models (Hidden Markov Models, Markov Chain Monte Carlo methods etc.) to 
localize a mobile robot in an indoor environment through pictures taken (by the same 
agent) in that environment at periodic intervals. 
 
 
2. Background behind SIFT 
 
The SIFT algorithm identifies interest points at the maxima of a Difference of 
Gaussian function. The Gaussian function is used to locate features at a variety of 
different scales. This is illustrated in Figure 2. A Gaussian pyramid is constructed by 
successively Gaussian blurring and downsampling an image. (Blurring involves 
convolution of the image with a Gaussian kernel). The Gaussian pyramid in Figure 2 
illustrates that lower layers of the pyramid (toward the bottom of the figure) reveal 
finer details, like the writing on the TV Guide and the design on the tablecloth but 
higher layers of the pyramid reveal only coarser details like the outline of the TV 
Guide and the table. 

Lowe [8] quotes work by Koenderink and Lindeberg that under a variety of 
reasonable assumptions the only possible scale-space kernel is the Gaussian function. 
He also quotes work by Mikolajczyk [9] that the maxima of a Difference of Gaussian 
Function is the most stable image feature.  He indicates that interest points that are 
most robust against changes in scale, are most efficiently extracted from the 
Difference of Gaussian function. 
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Figure 2 A Gaussian pyramid constructed by successively Gaussian blurring and downsampling 
an image. Lower layers of the pyramid (toward the bottom of the figure) reveal finer details, like 
the writing on the TV Guide, but higher layers of the pyramid reveal only coarser details like the 
outline of the TV Guide. 

 
 
3. SIFT 
 
The SIFT algorithm consists of the following major steps: 

1. Scale-space peak detection 
2. Accurate key-point localization 
3. Majority orientation assignment 
4. Computation of the local image descriptor 
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3.1 Step 1: Scale-space peak detection 
 
In the 1st step, the image is searched for peaks over both location and scale. This is 
efficiently implemented by constructing a Gaussian pyramid and searching for local 
peaks in successive Difference of Gaussian (DoG) images. The Gaussian pyramid is 
constructed by taking the image and successively blurring it with a Gaussian kernel. 
Successive layers of this pyramid are subtracted to get another pyramid of DoG 
images (Figure 3).  

(Note: In the implementation, the original image is initially upsampled by a 
factor of 2 before the pyramid is constructed. Gaussian blurring the original image is 
equivalent to low-pass filtering it, discarding the higher frequencies. Upsampling the 
initial image has the effect of introducing a guard band preserving the information 
content in the highest frequencies) Each pixel in the DoG images are checked for 
being a local maxima by comparing with the 8 neighbouring pixels on the same level 
of the pyramid and the 18 pixels from the image patches in the immediately adjacent 
layers as shown in Figure 4.  
 

 
 

Figure 3 Construction of the 1st 3 layers of the Difference of Gaussian (Scale-space) pyramid 
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Figure 4 Each pixel in the DoG images (marked with an x) are checked against its neighbours 

(marked with green circles) on the same and adjacent layers for peak detection. (Figure from [8]) 

 
3.2 Step 2: Accurate Keypoint Localization 
 
An accurate position fix on the keypoints located in the previous step has been 
implemented (as suggested as an extension to the original SIFT algorithm by [10]), by 
fitting a 3D quadratic function to the local sample points. Subsequently, all poorly 
defined peaks (termed edge response by [8]) that have larger derivative of the 
intensity gradient in 1 direction than the other perpendicular direction are eliminated.  
This can be ascertained from the matrix H: 
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If the one eigen value of H is significantly larger than the other, then the point is an 
edge. (Note: The derivatives in the matrix H are determined by taking differences of 
neighbouring sample points.) 
[8] shows that an efficient method of ascertaining if the ratio of the eigen values is 
large, is by checking Equation 1. (More details in this step can be obtained from [8]). 
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3.3  Step 3: Majority Orientation Assignment 
 
This step makes the descriptor rotation invariant. It involves calculating the gradient 
vectors in a window around the SIFT feature on the scale at which the feature was 
detected. So, for example, if a SIFT feature was detected with scale 3 (third level of 
the DoG pyramid), the 3rd layer of the Gaussian pyramid is accessed and the gradients 
(magnitude and direction) of the intensity values around the SIFT feature are 
calculated:  
 

22 ))1,()1,(()),1(),1((),( −−++−−+= yxLyxLyxLyxLyxm  Equation 2 

))),1(),1(/())1,()1,(((tan),( 1 yxLyxLyxLyxLyx −−+−−+= −θ Equation 3 

 
where and ),( yxm ),( yxθ  indicate the magnitude and direction of the gradient at 
location . indicates the intensity of the pixel at location . ),( yx ),( yxL ),( yx
 
The gradients are pre-computed on all the levels of the Gaussian pyramid. This is 
done by convolving the layers of the Gaussian pyramid with the 2 Prewitt masks 
(shown in Figure 5) to get the x and y directional derivatives (xgrad(x,y) and 
ygrad(x,y)) at each pixel position. 
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Figure 5 x and y Prewitt masks  

 
Then, the magnitude and direction of the gradient vector at each pixel position can be 
found out as follows: 

   22),( ygradxgradyxm += Equation 4 

   Equation 5 )/(tan),( 1 xgradygradyx −=θ

The gradient orientations are computed in a 16x16 window around the SIFT 
feature and quantized in 8 steps of 45 degree intervals.  (Note: [8] cites a 45-deg 
quantization interval, but I have used a 5-deg quantization interval for increased 
accuracy.) The histogram (Figure 7) is incremented by a sample that is weighted by 
its gradient magnitude and a Gaussian-weighted circular kernel that is placed on top 
of the 16x16 window. This has the effect of giving a higher weight to the samples 
near the centre of the window.  
 The majority gradient direction is subtracted from each of the gradient 
directions in the window and the window is rotated so that the majority gradient is 
perpendicular to the top margin of the window (Figure 8). 
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Zoomed-in view 

 
Figure 6 A Close-up look at a 16x16 window around a SIFT key (blue). Red vectors represent the 

intensity gradients in this window. Green crosses indicate the pixel centres. 

 

 
Figure 7 Orientation histogram with 8 bins at intervals of 45 deg  

 

 

Majority  
orientation 
direction 

Sampling 
window rotated to 
align with 
majority gradient 
direction 
 

 
Figure 8 Sampling window (green) around SIFT feature and intensity gradient directions (black 

vectors). Majority orientation direction shown in red. Sampling window is rotated (rotated 
window indicated in blue) to align with majority gradient orientation. 
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3.4  Step 4: Computation of the local image descriptor 
 
This step associates each SIFT feature point with a 128-element feature vector that 
uniquely identifies that point.  

The gradient orientations obtained at the end of Step 3 (weighted by their 
magnitudes and by a circular Gaussian kernel) are arranged into 16 histograms (as 
shown in Figure 9, except that the figure shows an 8x8 window and 4 orientation 
histograms to reduce clutter). Values of the orientation histogram constitute the 128-
dimensional vector (8 orientations x 16 histograms). This 128-dimensional vector is 
the SIFT feature vector. 
 

 
Figure 9 Values of orientation histograms calculated in sub-windows arranged as elements of the 

SIFT feature vector 

 
4 PCA-SIFT 
 
In 2004, Ke and Sukthankar [11] introduced a PCA-based local descriptor that is more 
invariant to image deformations and more compact than the SIFT feature vector. 
The PCA-SIFT algorithm accepts the same input as the SIFT operator, i.e., the sub-
pixel image locations, scale and dominant orientation of the keypoint. However, after 
this, the method of construction of the feature vector differs from Lowe’s SIFT 
algorithm. 
A 40-by-40 image patch is extracted around the interest point and rotated so that its 
dominant orientation is aligned with a majority orientation direction (as in Step 3 of 
the normal SIFT). The horizontal and vertical components of gradient vectors in this 
window are concatenated to form a 3200-element vector (40x40x2). 
 
Then, the following steps are performed: 
 

1. An Eigen-space representation of the gradient information of local image 
patches is pre-computed off-line by taking a large number of gradient patches 
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around SIFT interest points from many images. A large number of 3200-
dimensional vectors extracted from the gradients around these patches are 
used to construct a covariance matrix. 

2. The matrix consisting of the top 20 eigenvectors (of the covariance matrix) is 
used as the projection matrix. 

3. Online, given an image patch around a SIFT feature located in the current 
(query) image, its 3200-element feature-vector is extracted and is projected 
using the projection matrix to get a 20-dimensional feature vector. 

 
Thus, the PCA-SIFT algorithm has achieved a reduction in dimensionality from 128 
(in the original SIFT vector) to 20. 
It is also found to give better results in image matching than the basic SIFT (as 
claimed by [11]). 
 

To summarize, the SIFT algorithm identifies stable key locations in scale 
space. This means that scale changes of objects in an image will have no effect on the 
key locations selected. An explicit scale is determined at each point, allowing the 
image description vector to be sampled at an equivalent scale in each image. Also, the 
dominant gradient direction is identified at each SIFT point, which means that the 
transform is invariant to object rotation. At each SIFT point, the gradients around the 
point (at the identified scale) is arranged as a 128-element feature vector (and reduced 
to a 20-dimensional vector using the PCA-SIFT extension) which characterizes that 
SIFT feature. It is this vector that is matched to a database of feature vectors.  
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5 Wheelchair Localization 
 
The distinctive invariant features of SIFT are used to match digital image content 
between 2 views of a scene. Images corresponding to views taken from the wheelchair 
camera as it moves through a building can be matched to a database of images using 
the SIFT algorithm. Each image in the database is associated with a topological node 
on a map of the environment. Then later, when the wheelchair webcam views a scene, 
the algorithm can find out where it is on the topological map based on the best-
matched image. This is necessary for an algorithm that needs to navigate the 
wheelchair (or a robot) from one room to another. 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 
 

Figure 10 shows the idea behind the vision-based localization 

 
A topological map of ground-floor was made, with topological nodes 

representing the places at which images were taken. The wheelchair was taken to each 
topological node and 8 pictures taken representing each node (360 degrees covered in 
eight 45-deg intervals). SIFT features for each picture were calculated offline and 
stored in the database. During localization, the current picture from the camera was 
compared with images in the database. The closest match gave the location of the 
wheelchair on the topological map. 
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Figure 11 Left column shows images from webcam during localization and right column shows 
best matched image in database 

 
Figure 12 Figure shows topological nodes (marked with X)  in IRIS corridor 
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5.1 Hidden Markov Model 
 
A Bayesian filter incorporating a Hidden Markov Model [6, 12, 13] that models the 
transition probability between topological locations is used to increase the robustness 
of the localization. For example, say that at time k, the wheelchair is localized to be at 
node 1 in front of Robotics Lab 1 (Figure 12) and at time k+1, because of faulty 
image matching, its location is given to be at node 11, in front of the lift. This 
transition is impossible in 1 time step, and is given a very low probability by the 
Hidden Markov Model. 

A recursive Bayesian filter that characterizes the probability of the current 
state x (indicating the current topological location), given the sequence of past 
observations zk upto time k (past observations are the past image matches) is given by: 
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where the sensor model is calculated by 
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The LHS of Equation 7 gives the probability of making the observation z at time k, 
given that the wheelchair is at state xi (topological location) at the same time. C(i) 
indicates the number of matching SIFT feature vectors between the current image and 
the closest image in the database (that are below a threshold Euclidean distance). This 
value is normalized by the total number of matches (below a threshold Euclidean 
distance) to the entire database of images. 
 

The transition between states xi and xj (locations xi and xj on the topological 
map) are modeled by a Hidden Markov Model. The probability of being at state xi , 
given that the state at the immediately previous time step was xj 

( )|( 1 jkik xxxxp == − )is given by A(j,i). A is a NxN matrix, where N is the 
number of topological locations. Entries in the matrix corresponding to adjacent 
locations are given a value one, and the final matrix is normalized across each row. 
 

The conditional prior P(x|zk-1) (probability of being at state x, given past 
observations until time k-1) in Equation 6 is found using the transition matrix A(j,i) as 
follows: 

∑ −
−

− ===
n

j

k
jk

k
ik ZxxpijAZxxp )|(),()|( 1

1
1

 Equation 8 

 
A localization experiment involving driving the wheelchair down the corridor 

from node 1 to 17 was performed 2 days after the database was constructed, and at a 
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different time of day (database images were taken in the morning, and localization 
was performed in the afternoon).The results from the experiment are shown in Table 
1. The actual ground truth position is indicated by G, the results from the image 
matching by I, and the Bayesian-HMM filtered position indicated by H. 

The whole process of SIFT feature point localization, key extraction and 
matching the key to keys of images stored in a database took on an average of 7 
seconds  per location for a Matlab-based implementation. (Note: The calculation of 
SIFT keys for the pictures in the pre-constructed database was done offline.) 
Computationally intensive parts of the SIFT key extraction, like image re-sampling, 
gradient quantization and weighted histogram calculation were re-coded in CMex, for 
faster execution. 
 
 

                Frame Number 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
1 G,I,H    I       I      
2  G,I,H                
3   G,H               
4    G,I,H H             
5   I  G             
6      G,I,H  I        I  
7       G,I,H H I         
8        G H         
9         G         
10          G,I,H        
11           G,I,H H      
12            G      
13             G,I,H     
14              G,I,H    
15               G,I,H H  
16                G  
17                 G,I,H 

Table 1 shows the outcome of the localization experiment. x axis indicates incoming frame 
number and on y axis are the topological nodes. G indicates actual ground truth position, I 
indicates location as determined by SIFT image matching, and H indicates location from the 
Hidden Markov Model 

 
6 Conclusions and Future Work 
 
The Scale Invariant Feature Transform (SIFT) algorithm, that matches images by 
extracting interest points invariant to changes in perspective, scale and rotation (and 
matching the local gradient information around them) was implemented in Matlab. 
The dimensionality of the SIFT feature vector was reduced from 128 to 20 using the 
Principal Component Analysis. This image matching algorithm forms the basis for a 
topological vision-based localization algorithm for a motorized wheelchair in an 
indoor environment. Images corresponding to topological nodes in the environment 
(an indoor corridor at the IRIS facility) were captured from the webcam (mounted 
atop the wheelchair) and stored in a database. In an experiment performed 2 days 
later, the algorithm localized the wheelchair on the topological map every time a 
frame was captured as it was driven down the corridor. A Hidden Markov Model used 
to model the transition probabilities between the nodes improved the robustness of the 
localization to false image matches. 
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 Possible improvements in the localization algorithm would include a better 
image normalization procedure (possibly histogram equalization) that makes the 
algorithm more robust to ambient light intensity. A denser sampling of images (by 
increasing the number of database images per topological node and also including 
images taken at different times of day) would improve the accuracy of image 
matching.  
 Currently, the map is hand-made and the database generation is done 
interactively by driving the wheelchair to different physical locations and capturing 
images. This could be automated. For this, the wheelchair needs to have a navigation 
algorithm (that would include wall following and obstacle avoidance routines) that 
would enable it to explore different places and also a map-building algorithm, that 
would allow it to build an incremental map as it moves through the environment. 
Lowe, Le and Little [14] report on such a system that calculates camera (and hence 
robot) ego-motion by matching SIFT features between frames. The system contains 3 
cameras that are used to construct 3D world coordinates for each set of matched SIFT 
features. The SIFT features and their corresponding 3D coordinates serve as 
landmarks for map-building and tracking. 
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