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Abstract

Support Vector Machines are a form of binary classifier which requires optimization of a
constrained quadratic program. When used to classify large data with limited processing memory,
the main problem can be decomposed into smaller sub-problems which are then solved sequentially.
However, the speed of this method depends on the sequence of sub-problems solved. In this paper,
we propose a heuristic framework to select the sequence of sub-problems for faster convergence. The
framework is based on the idea of maximizing the change in the objective function at each iteration.
We provide a sufficient condition for any heuristic rule to guarantee asymptotic convergence of the
decomposition method. The heuristics are then applied to benchmark data and show a consistent
improvement in performance over current state of the art decomposition algorithms sii¢hi4s"

and LibSVM .

Index Terms

Support Vector Machines, classification, decomposition, inequality constraints, working set se-

lection.

|. INTRODUCTION

The Support Vector Machines (SVM) developed by Vapnik [1] have been shown to be a
powerful supervised learning tool for pattern recognition problems. The data to be classified

is usually written as:

O = {(x1,41), (x2,42) - (Xn, Yn) }

x; € R" (1)

v € {—1,1}
The SVM formulation is essentially a regularized minimization problem leading to the use
of Lagrangian Theory and quadratic programming techniques. The formulation defines a
boundary separating two classes in the form of a linear hyperplane in data space where the
distance between the boundaries of the two classes and the hyperplane is known as the margin.
The idea is further extended for data that is not linearly separable by first mapping it (via

a nonlinear function) to a possibly higher dimension feature space. The nonlinear function,
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usually defined ag(x) : x C R" — R, n << m is never explicitly used in the calculation.
The Lagrangian dual problem expressed solely in terms of Lagrange multipliengmely:

1

S(a) ==a’Ga —a'e
min oD
D={al0<a; <C a’y=0} 2

Is usually solved, where
Gij = yiy; K (Xi, %5)
e={1,1,...,1}

Explicit use of the nonlinear function(.), has been avoided through the use of a kernel

function, defined formally as the dot products of the nonlinear functions

K (Xi,X;) =< ¢(X;), ¢(X;) > 3

We assume a Mercer kernel which is positive definite. The trained classifier then has the

following form:
f(x) =sgn <Z iy (X, X;) + b) 4)
=1

We will solve the following partitioned SVM problem via sequential decomposition using a

projected Newton method

— o T
' 1 | H, H. ||
min max ¥ (a;) 25 P P
@ b o, | [HT G, ||a,
- o T
/
o e
_ p D (5)
aS eS

subject to:
D, ={,|0 <, <C1}

whereb € R, is now treated as a pseudo-Lagrangian multiplier [2]. The partitioned matrices

are
_| & & H, = G Yol g | &
G, G, yr 0 ye

and the augmented vectors are



MECSE-26-2005: "A Basic Heuristic Decomposition Framework for ...", D. Lai, N. Mani and M. Palaniswami

The vectoray, is known as thewvorking setandH,, is the subHessiarcorresponding to the

working set. Note that the gradient vector corresponding to the sub-problem is

v, =H,a, + H.a, — € (6)

P

and the resulting Newton update is

i+l gt —1,,
o), =o' —[H Vv, (7)

st+1

where thestep magnitude? is selected to ensure’;

€ D. Every element of the solution

vector a must satisfy the corresponding Karush-Kuhn-Tucker ( KKT ) conditions

vifX)=11if 0<o;<C (8c)

The decomposition method is generally applied in situations where computing memory
is limited. The method decomposes the main problem into a series of sub-problems which
are then solved sequentially where a sub-problem is identified by the corresponding set of
variables known asvorking setsin SVM literature. Osuna [3] is credited as the earliest
to apply a form of this method which he calletiunkingto solve face detection problems
using SVMs. Later algorithms such as SMO [4] agE@M'e" [5] selected working sets
based on approximately maximizing the step size. It has been recognized by Joachims [5],
Lin and Hsu [6] and Chang [7] that the choice of working sets is central to the speed of
the decomposition method. Lin [8], [9] showed that working sets chosen in the manner of
SVM'eh® resulted in a linear convergence rate. This was empirically confirmed by Laskov [10]
who further showed that decomposition was sometimes faster than optimization on the entire
problem space. The finite termination of SMO type algorithms has been proven by Keerthi and
Gilbert [11] using a counting method. A general assumption is that the rate of convergence
Is proportional to the rate of improvement to the objective function [10]. In [12], we showed
how the inequality constraints should be taken into account when selecting a working set in
order to get better improvement to the objective function.

In this paper, we propose a heuristic framework for selecting working sets. The use of
heuristics delivers a compromise between achieving faster theoretical convergence rates and
efficient practical implementations. Our framework will be composed of semi-adaptive type

heuristics which will be applied according to the properties of the dataset. In Section I,
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we first begin by describing our notation and several well known results. Section Il briefly
outlines the working set problem and the use of the objective function as a merit function
for choosing the working set. This is followed by some theoretical analysis on the projected
Newton method in the decomposition setting. The exposition is necessary to motivate our
design of the heuristic algorithm. We also derive a sufficient condition for a heuristic rule

to guarantee asymptotic convergence of the heuristic algorithm. In Section V, we discuss
the basic implementation of the framework and link our previous analysis to the described
heuristics. We then run our proposed algorithm on several benchmark data sets and compare
its performance against current state of the art algorithm$viM!®" and LibSVM. We use

the standard notation where scalars are denoted by italics, column vectors by boldface small

letters and matrices by boldface capitals.

Il. PRELIMINARIES AND NOTATION
The vector of variableso € " wheren is the size of our data s@ is
o' ={ay,...,a,,b}
The working sef o, is a subset o’ where

o, = {ay,, ..., ap,, b}
Throughout, we let the subscriptdenote the selected working set whilendicates variables
that do not change i.e. static during the optimization step. The subscripts also indicate the
size of the vectors and the matrices e.gajf € ™ thenG, € %™ ™. The notationc,,
denotes the augmented working set which includes the pseudo-Lagrdmghow let the
set A denote the sigma algebra of working sets i.e. it contains all possible combinations of
working sets so thatp we havea, C A . Since most of the state of the art decomposition
algorithms e.g. SMO, LIBSVMSVM"#" modify a small working set size we restrict our

working set to the elements
a; :{Oél,ag,b} (9)
Let Az = 21 — 2t then (7) written element wise is

A, :691(9202 —y1v1 + (Ko — Kao)vy)

(10a)
T2

Ay :ﬁy2(y11)1 — yoUg + (K11 — K12)vp) (10b)
T2

Ab =0 [(Ka — Ka)tyhv1 + (K12 — K11)yav2

+(K11 Koy — K12Ko1)vy] (10c)
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where due to the symmetric kernel function:
7712 = — det Hp :K11 —|— K22 - 2K12 (11)

and0 < (§ < 1 is selected so that the updated working set satisfies the individual constraints

le. a’;“ € D,. The corresponding element gradients are then

V), ={v1, v, U} (12)
The error of a training example is defined as
E; = yiv; (13)

and during optimization, the violating points i.e. points that do not satisfy the KKT conditions,
can be grouped according to the sign of the errors. The error indices sets are
I(E") ={i|a; > 0,v; > 0,9, = 1}U
{ila; < Cyv; < 0,y; = —1}
I(E™) ={i|la; > 0,v; > 0,y; = —1}U
{iloy < Civ; < 0,y; = 1}

The general change in objective function [12] with respect to a workingx§et A is

1 T T
M(er) = §Aa; H,Aa) + Aar v, (14)

The Frobenius norm or Euclidean matrix norm is defined for & n matrix H as

H[ =

Whenn = 1 this becomes the standa¥d-norm for vectors also known as the Euclidean

vector norm.Holder’s inequality(see for example [13]) states that for axy € R”"
1 1
XTY] < X[yl —+==1
PR p g
where the norms arp-norms defined as
1
X[l = (|21 + 22’ + ...+ [2a]")?

If the Euclidean norm is used, then the inequality is also known a<CHugchy-Schwartz

inequality.
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I11. THE WORKING SET PROBLEM DEFINITION

The decomposition method presents an extra degree of freedom compared to standard
Quadratic Programming programs e.g. LOQO [14], active set methods [15] in that one has
the choice of selecting which working set to update at each iteration. In order to achieve re-
spectable convergence rates, one generally requires a merit function to measure the optimality
of the working set choice. A standard merit function employed in optimization is the change
in objective function. The reason we would use this form of merit function is summarized
by the following assumption

Assumption3.1: Let T = [0,¢] denote the period of iteration and assume that in this
period, T the rate of convergence is proportional to the change in the objective function.

In order words, we assume to get better convergence rates if we make the best progress
possible towards the minimum of the objective function at every iteration. This written

mathematically for every iteration stepresults in the following problem

1
min —Aa;THpAa; + Aa;Tv; (15)

o, €A
where thestep sizeAa; is selected such tha‘dt’;+1 € D, and (15) is the change in the
objective function for the SVM problem (2). This then becomes a combinatorial problem
which needs to be solved at each iteration step until all KKT conditions or some criteria for

finite termination is satisfied. Joachim’s [5] bases $i&'8" algorithm on solving

. T
min Aa, v, (16)
P

where again the step sizka;, is selected to ensure feasibility. Problem (15) means searching
for the working set which minimizes i.e. largest negative change in the objective function
under Assumption 3.1. While solving (16) means finding the working set that gives largest
change toa’ in the direction of steepest descent. Both methods are similar in nature. In our
case, using the projected Newton method and substituting (7) reduces both (15) and (16) to

the following problem

. 1T r7—1y,
min —c,V . H_ "V 17
aeh TPTR TP (17)

wherec, is some positive constant i.e, > 0 to ensure feasibility of the updated working
set. For our working set size, it will be shown later that (17) can be simplified further under
certain initial conditions to

i (% _ @> (B> — En)” (18)

oy, €A M2
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From (15) it can be seen that the change in the objective function depends on the choice of
the working set. Once the working set is selected, the magnitude of change in the objective
function can be maximized by obtaining the largest step sizg. One may now conclude
that the two immediate factors to improving the speed of the decomposition method are the
choice of working set sequence and the update rule applied. However, neither the forward nor
backwards Dynamic Programming methods [16] are suitable to be applied because all possible
working set combinations have to be considered at each iteration. Instead of obtaining the
optimal sequence of working sets, algorithms like SMOM"s™  LIBSVM and so on select
working sets that approximately solve either (15) or (16). The smaller the number of iterations
required, the better the theoretical convergence properties of the algorithm. Unfortunately, as
we will demonstrate later, refining our search for the optimal working set at each iteration can
compromise on the implementation run-time. We are thus interested in finding a compromise
between these two opposing factors in designing an algorithm. The long term objective is to
enhance the training times for Support Vector Machines so that they become more practical
for large datasets. In the following, we propose the design of a basic heuristic framework
with the objective of updating a shorter sequence of working sets as well as maintaining an
acceptable if not better implementation run-time. The framework will be designed based on
the view (see for example [17]) that specific problems require specialized techniques which
take advantage of the problem structure, something that general optimization methods are
unable to do.

In the following section, we provide some theoretical analysis to the minimization of (18).
The results will be used to motivate the individual heuristics and the design of the heuristic
framework. The initial fixation with the projected Newton rule coincides with the quadratic
nature of the objective function and its quadratic convergence properties. We note however
that the analysis can be extended easily to other update rules e.g. gradient descent, conjugate

gradients etc.

V. THEORETICAL ANALYSIS OF THEWORKING SET PROBLEM

The purpose of this section is two-fold. First, we investigate the different components of
the combinatorial problem (18) and establish some minor results. These are then used to
compute the sensitivity of (18) with the aim of investigating which components play a bigger
role. Then a sufficient condition is derived which needs to be satisfied by any heuristic rule

to guarantee asymptotic convergence.
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Fig. 1. The situation shown if the update step is positive and resuktéﬁﬁ(i) > UB. The potential overstep, ; and

distance to boundl, ; is positive.

1,() =0
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»
»
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Fig. 2. The situation shown if the update stepli8 < a;“(i) < UB. The potential overstep, ; is zero.

A. The effects of the inequality constraint set

Since this is a constrained quadratic problem, we expect the constraint set to affect the
change in objective function. In line search algorithms, this has been implicitly done by
adjusting the step magnitudeto maintain feasibility [15], [18], [19]. In order to study their
effects, we proposed a method to quantify them. The structure of the inequality constraint
set allows us to model their effect using a simple parametgr called thepotential of
overstep[12]. In relation to the Newton rule, this quantity models the amount of overstep
if the update causes theth variable to violate the constraint bounds. Fig 1-Fig 2 illustrates
the idea with respect to general upper (UB) and (LB) lower bounds. The distance to bounds
d,; measures the closeness of a variable to the bound. Mathematically, the two quantities are

related by

=1\, t+1 t+1
. —H, v, —dp; o >UB,a; <LB
i

0 LB <oft' < UB

The augmented vector of potential overstep can be written as
—1
T,=—-H'v, —d, (19)

Whered;, = {d,, dy}. The scalaw, = 0 is for mathematical convenience sintcés treated as

a working set variable. Note thatis unbounded and so the notion of overstepping does not
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apply. The constrained Newton update (7) rewritten in terms of the potential of overstep is

then

1t =1
=o', —H v, -7, (20)

Xy

which ensures thahf;“ € D, minimizes the corresponding term in (5).
For our case of applying a projected Newton step, we project the updated iterate back into
the feasible region by scaling the step sixev, so that only one multiplier is allowed to

reach the bounds. Then the step magnitiddean be replaced as follows
-1,/ _ -1
_BHp V;_ _Hp V; B T;?

_ “1
T;— (B—1)H, v

P

(21)

We define the sets

C—al.
A:{ A i € I(a), al™ >UB}

al
B= {_Aai i € I{a,), al™ < LB}

Leta = min A; € A andb = min B; € B. The scaled distance to bounds is now
dp; =—min{a,b} H v,

One may also notice that = min {a, b} and we have thus described how to obtdin
The following minor result shows that under a certain initial condition, the gradient with
respect to the pseudo Lagrangi@anemains static.

Lemma 4.1:Suppose that we select the working set such that
]({Oéil, 8 75%) b}) = {’h, ig, b|’i1, i2 S ](E), b e §R} (22)

whereE = {y,v;} for all i = 1...n. Assume fort =0, oy = 0 for all i = 1...n. If for
any a;, we apply (10a) to (10c) then for all> 0 we havev, = 0. Furthermore, if for some
t =t , v, = 0 then for allt > ¢, we havev, = 0.

Proof: First, by differentiating (5) with respect to the threshé|dve have
Vb = Yiy Oy + Yip Qi

From initial conditions, the lemma is proved trivially for= 0. Now for ¢t > 0, the change

in the gradient is linear and can be written simply as

o t+1 t __
Avy = v, — vy = yi, Aoy, + i, Acy,
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Substituting with (10a) and (10b) we obtain

Avy =y;, Ay, + yi, Aayg,
Y7, (WinVip — Yir Uiy + (Kigi, — Kiyiy ) Us)

=0
Niviz
—Fﬁyi (yilvil = Uiy Uiy + (Kilh - Ki2i1)vb>
Nivia
ﬂ(Kilil _ Ki2i2>vb

Miviz
Sincev, = 0 at¢t = 0, thenAv, = 0 for ¢ = 1 andv} = 0. Then by induction, we have
vi = 0 for all t > 0. Now sincet is arbitrary, lett = ' — t;, and the lemma holds also for
t' = t. |
The following result shows that under a certain selection rule, the elements which are likely
to haver;, > 0 can be identified.
Lemma 4.2:Let the variables of a working set be denotedddy= {«, , a;,, b} and assume

we use a positive definite kernel with initial conditiea = 0. Suppose that we select the

working set such that
I(a,) = {i1, iz, bliy € I(ET),ip € I(E7)} (23)

and the update rule of (10a)-(10c) then we have

a) If v; <0 andal =0 thena!™ — UB.

b) If v; >0 anda! = C thena!™' — LB.

c) If 0 <al <C andv; >0 thena!t' — LB while if v; < 0 thena!™ — UB
where motion of violaters when updated in relation to the bounds is denoted-hy ”

Proof: First note that the pseudo Lagrangiais an unbounded variable and hence is not

considered here. By Lemma 4.1, the initial conditionnof= 0 implies v, = 0 always which
means that the updates can be simplified. Now consider the element-wise updates written in

the following manner
Aay, =y;,d (24a)
Aaiz :_yizyhAO‘h = _yi2d (24b)

whered = (Ezn%l) and Ac, = {Aa;,, Aay,, Ab}. Note that due to (23) we hawe < 0
always since by definition of positive definiteness of the kernel we have 0. We consider

the following cases:

A proof for the general working set case can be found in [2].
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1) Caseq;, =0 andv;, < O:
From (8) this is a violater ang;, = —1 sincey;,v;, = E;, € E*. Provided the step
IS nonzero, from (24a) we hav&cq;, > 0 which implies Aa;,v;, < 0. Furthermore,
by definition Aa;, > 0 means thatt! > ! or o], moves to the upper bound when
updated.

2) Caseq;, = C andv;, >0
The point is also a violater witly;, = 1 since by assumption (23) we haygv;, =
E;, € ET. Using (24a) as before we geta;, < 0 and deducelq;,v;, < 0.

3) Casel < o, < C' andv;, # 0:

This gives rise to similar situations as in Case 1 and Case 2 and the same result follows.

The proof fora;, follows in similar fashion using (24b) and is omitted here. [ |

Corollary 4.1: Assume a positive definite kernel, then for every violaterwherei €

I(ET UE™) updated using (7), the following holds

Aa,v; <0 (25)
Proof: The proof follows easily by reexamining Cases 1-3 in Lemma 4.2 and noting
that for all types of violaters, the product (25) is always negative. [ |
The corollary is not surprising as it turns out to be a special case of Wolfe’'s theorem (see
e.g. [19]) which we will invoke later on. In other words, working sets composed of violaters
provide a strict decrease in the objective function. The next result requires the following
Lemma 4.3:Let the variables of a working set be denotedcqyz {a1, ay,b} and assume
a positive definite kernel matrix with initial conditiam = 0. Then provided the stefic;, # 0
we have
VI H IV > 0 (26)
with equality if and only if||v, || = 0.

Proof: The proof is through direct calculation. First note by (7) that

Holv = —lAa;

p °p 6

Now using the initial conditions, we have from Lemma 4.1 that= 0. Using (10a)-(10c)
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we can thus simplify the following

Ty -1
v, H, Y,
1
= —BV;TAa;
_ __y1U1(y2U2'—'91U1)<_ Y2v2(y101 — Y2v2) @27)
T2 Th2
B E} + E3 — 200 FEy  (Es — Ey)? >0
12 T2 B

Note that (27) can be zero only iff = v, = 0 or [|v,|| = 0. The casey,v; = y,v, does not
occur becaus@a;, # 0. [ |

The following describes several properties of the potential of overstep and its relationship
to the original step magnitude,

Lemma 4.4:Assume tha&lirgo M(a') = 0 and apply the Newton method (7) to solve (2),
then Va; C A and iteration steps,> 0 we have

a) M(a;) <0if and only if 0 < 3 < 2.

b) If in addition to thl?o M(a') =0, forallt>0v,#0 thentllr?oﬁ =0 or tlirgoﬁ = 2.

Il
H, vyl

c) The conditiontlim M (/) = 0 further implies lim < 1 and the behaviour is

t—o0
p-norm independent.
Proof: First note that the assumptiothm M(a/) = 0 implies that in the limit, we

have also for alla, C A the behaviourtlim M(ed,) = 0. Now setAal, = —H 'V and

substituting into (14) we obtain

M(a) = (6—2 - ﬁ) v TH WY (28)
p 2 p p p

For the Newton step to be a direction of descent, we must have

2
M(ay) = (% — ﬁ) V,"H WV <0

From Lemma 4.3, we have;TH;lv;, > (0 and so we require(%2 — ﬁ) < 0. The result of
a) then follows after rearranging the inequality. The "only if” can be verified by taking any

B> 2or <0 to show that)M (a;,) > 0. Taking limits with respect to t, we have
lim M(a/)— Tim (2 v IH WY
fm Med)= lim {5 =0 )V, H, v,

Now if we havetlim M (a,) = 0 andv, # 0 then we must have

i (% -5)=0 9)



MECSE-26-2005: "A Basic Heuristic Decomposition Framework for ...", D. Lai, N. Mani and M. Palaniswami 13

which occurs if eithertlim s=0or tlim B = 2. Taking norms of (21), we obtain

I7ol1< 16 = 1{[H [V,

[l

— |8 -1]> —2—
IH v

Note this is holds for anp-norm and so the result will be p-norm independent. From b) we

(30)

deduce the following
tlim B —1| = |tlimﬁ—1| =1

Using this and taking limits of (30)

lim [ — 1| > lim HlT—ml
100 t=eo [[H 7 [[v

(31)
and the result of c) follows. [ |
The result in ¢) has several implications. As— oo or as we approach asymptotic con-
vergence, multipliers at both upper and lower bounds will have non-zero potential of over-
stepping. The magnitude of overstepping increases indicating that they "push” harder against
the constraint boundaries. Multipliers in between the bounds will have some potential of
overstep. Those in between bounds with zero gradients will not have a potential of overstep
i.e. |l = 0.

Remark4.1: A previous view was that a larger step size could be obtained if we minimized
the potential of overstep [20]. A more appropriate requirement is to say that we want to find
the largest step in the constrained region. Minimization of the potential of overstep not only

ensures the step remains in the constrained region but implicitly looks for the largest step

size.

B. The gradient elements and the condition of the subHessian

First, since we modify two multipliers and the threshddd we can approximate the

maximum gradient norm by
||VpHmaa: ~ |EZ - Ej|max

whereVi, j we selectE; € ET, E; € E- and v, = 0 from initial conditions. This selection
method can be relaxed in the event tEdt = () or E- = () and further facilitated if the sets

E* andE~ are ordered as
E+:{EZ >O|E1 > FEy > Ey > } (32a)
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and one can pick in subsequent order the elements which would give maximum gradient
norm. If either one of the sets is empty, one can still pick the first and last elements of the
nonempty set to give a maximum gradient norm. This in fact is not new and has been the
guiding heuristic in previous algorithms where the maximal violating pair has been chosen
e.g. SMOSVM"#* and LibSVM.

The matrixH, which corresponds to the working set, is the Hessian of the subproblem

(5). The condition number of this subHessian is defined as
ki, = [Hpll[H,

and is a rough indication of the closeness to singularity of the matrix [13]. The smaller
the condition number, the better conditioned the matrix is. Further more, the subHEgsian
defines the curvature of the subproblem (5) and a stronger subHessian e.g. diagonal dominant,
means comparatively steeper directions of descent. Calculating the condition number or
determining the diagonal dominance of the subHessian might be too computational intensive
considering the combinations required.

We note that the quantity;, defined in (11) is the determinant bif, and explicitly appears
in (18). Minimizing ;> can also be seen as approximately obtaining a larger change in the
objective function which invariably means a steeper descent direction. It is an approximation
mainly because a small determinant does not necessarily mean a more diagonally dominant
matrix. However, for our heuristic purposes we could use this as a guide to select a subproblem

with a relatively better conditioned subHessian.

C. Sensitivity Analysis of the Objective Function

In this part, we investigate the sensitivity of the discussed quantities in an attempt to
pinpoint those which would contribute more towards the improvement of the objective. By

substitution of (20) in (14) the change in the objective (2) can be written as
M(a)= % ’T,Z;Hp’T,p — V;TH;VJ'D} (33)
where the Hermitian matribH, is the Hessian of the sub-problem, is the augmented
gradient vector and-’,, is the vector of potential overstep. The following technical lemma
will be used for the next result.

Lemma 4.5:Let H € R"*™ be nonsingular and e || be any matrix norm. Thei + AH

is nonsingular provided

1
[AH[] < ——— (34)
H™]
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and the inverse expansion exists and is

H+AH)' =H™' — (H'AH)H ™!
+(HTTAH)?PH™ — . (35)
Proof: see for example Adi-Ben [21] [ |
The matrixAH can then be viewed as a perturbationHof We propose the following

Lemma 4.6:Let H € R"*" be positive definite and ldf e || denote the Frobenius matrix

norm. For any positive definitdH € R™*" such that

1
[AH[ < o= (36)
2[H71|
andx € " we have
x'(H™! — AH Hx< xT'(H — AH) '
<x"(H™'+ AH )X (37)

Proof: First note that (36) fulfils the condition in Lemma 4.5 and Ho— AH is

nonsingular with the following inverse expansion
(H—AH)™!
=H % (H'AH)H '+ (HTTAH)PH + .
=H % (HTAH)H™ + P((HTTAH)?)H (38)
Here the polynomial matrix equatioR(Z) is denoted as
P(2)=2+2Z*+2Z°+...
Then multiplying both sides of (38) by € ", we obtain
xT(H — AH)'x
= x"H !X+ x"H'AHH 'x + x" P(HT*AH)*)H *x
> x"H ' + x"H ' AHH ~'x
> xTH 'x — xTAH'x

by virtue of H"!AHH ~! being positive definite. This proves the lower bound. For the upper

bound, assume first that the matrix

H-AH)'—H'+AHH >0 (39)
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I.e. positive definite, then using (38) we have
[(H—AH)™" — (H"+ AH "] AH
=H"'+PHT'AH)H' — (H' + AH™!))AH
= (P(HT'AH)H™! — AH™H)AH
= P(H'AH)?) —1 >0
Rearranging and taking norms, we get
< [P((HTTAH)?)|

< [IH'AH|? + [[HPAHIP + ..
[H™ AH|]”

= 40
1 — [[H'AH]| (40)

the last line being the sum of an infinite geometric serie§HT ' AH|| < 1. Rearranging

(40) and simplifying we get the quadratic form
IHT'AHI? + Val[HT AH|| = Vi > 0 (41)

Factorizing and examining the two cases, we find/for 1 that (42) holds only for the case

—n3 +Vn —|—4n%

[HAH| > 5
—nd — vn+ Anz 1
> > =
2 2
or
1
[AH]> o
2[[H™]
This contradicts condition (36) and so we must have
H-—AH)'—H''+AH ) <0 (42)

instead of our initial assumption (39). Now take any vectar " and multiply (42) to give
X" [H=AH)"" = (H'+ AH™ )] x <0
= xT(H - AH) X < xT(H™!' + AH )X

and the upper bound is proved. This completes the proof. [ |

The following proposes an upper bound to the maximum possible change in the objective

function.
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Lemma 4.7 (Sensitivity of Change in the Objectiv@)ippose fora;, € A the change in
objective function is
1 /
M{a)= 3 |7/ Hyr'y = VI H, Y,

Let AM > 0 so that the sensitivity for a negative change in the objective function is

| =

M(a;)—A]\& [(T/p - AT,p)IZHp - AHp)(T,p - AT’p)

/

—~ DN

AV)H, — AH,) 71 (V) — AV))] (43)
whereH,,, AH, € ™™, Av, At’, € ™ and
T/p - AT’p =(B-1)(H, - AHp)il(V; - AV;) (44)

Assume further that the perturbation matr®H,, is positive definite and

1
[AH,[| < —
P 2K
Then
: Lo [AH,II[AT",|1p5
inf —AM> ——||H 1||||v’ — Av’||2 fl” P
20 T AH, T, — Av; e
+ 04 + pB] (45)
where
B V1 R il
vy, — Avy |2 IH, ]

Proof: The condition on||AH,|| allows us to apply (37) of Lemma 4.6 to (43). We

obtain

[(T,p - AT,p)T(Hp — AH,) (7', — A1)
(Vo = AV)TH, — AH,)"H(V, — AV))]

1
25 [(Tlp - AT’p)szp - AHP)(TIP - AT/p)

1 T T, -
—3 T/, AH, T, + Ay, HPIAVL

+(vi, — AV)TAH (v — Av))| (46)
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We now want to show that
V' HTAV) — 77 (H, — AH,)AT, > 0 (47)
Using the definitions in (21) and (44), we get after some algebra
V;THglAV‘; - T,pT(Hp — AH,)ATY,
_ 2\ Ty —1 2y T y—1 -1
= (268 =)V, H, Av, + (8 = 1)°v, H P AHH Y,
Now note that we must have
Ty 4—-1
v, H (v, = Av,) <0 (48)

to maintain a step towards the minimum of the problem. Using this fact, Lemma 4.4(b) and
Lemma 4.3 we then deduce th@ig — 52)V;TH;1AV; > 0. Then sinceAH, is positive

definite, we have shown that (47) holds. This allows us to reduce (46) further to
~AM> —% [T'pTAHpT'p + AV H A,
+(v, — AV)TAH T (v — AV))] (49)
Since all terms in the brackets are positive, we can now deduce that
AM g% |7 AH, T, + AV, TH AV,

+(Vi = AV))TAH (V) — AV))|

[AH, || [JAT"]?
-1
IH, ] [lvy, = Avg |2

Lo,
<SIH IV, — Avy |

NAl |AH, ||
v, = Avp [l [IH i
Lo IAH || [IAT|?
=5 IH, v, = Avy|* | ==t %
20 T LI I, = Avy 2
Al IAH, ]
v, = Avp [l [IHG |

|AH, (AT [*p5
IAH v, — Av, |1

1 -1 2
=5lIH, v, = Avi |

+ 0%+ pa)

Taking the negative, we obtain the infimum for the minimization of the objective function
and the lemma is proved. [ |
Remark4.2: Equation (45) relates the sensitivities of the previously mentioned components

of the step that affect the rate of convergence namely the sub-gradients, the potential of
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overstep and the inverse subHessian. Specifically, the sub-gradient norm gives a quadratic
contribution towards the maximum possible change in the objective function. The potential of
overstep is related to the sub-gradient through (19) and varies in similar fashion. This explains
roughly why current decomposition algorithms e.g. LibSVBA/M"#" which strictly select
working sets based on large sub-gradient norms are an improvement over the original SMO

algorithm.

D. Convergence Properties

It may be of some concern that the newer working set selection methods may result in
non-convergence of the decomposition algorithms. We show here that as long as the heuristic
rule selects working set elements which satisfy a condition, it is sufficient to guarantee
asymptotic convergence. Hush and Scovel [22] show that a necessary and sufficient condition
for strict decrease in the objective function for SMO type decomposition algorithms is that the
working set must consist of violaters and non-bound Support Vectors. We give a generalized
convergence theorem for heuristic rules selecting our working sets size and the use of an
arbitrary update rule i.e. not necessarily Newton. The condition is sufficient but not necessary.

Lemma 4.8 (Sufficient Conditionslet the kernel matrixK, of (2) be positive definite and

denotea’ as the optimal point of the problem. Then

Jim o’ —a’*|| =0 (50)

a) For allt > 0 and for alla;, € A we can finda, which givesAa;, such that
AoV, <0 (51)
b) Forallt >0 anda;, € A we select
oy, = {og,bli e (EN)UI(E") U I(ap)} (52)

wherear = {0 < o < C}.

Proof: We will first show that strict decrease in the objective function implies (50)
and strict decrease is in turn guaranteed by (51). Then, we will show that the condition (51)
requires that we select working sets satisfying (52).

First note that the optimal value of the probleétia’) is not at —oo due to a finite

constraint set i.eD is closed,convex and the data set is finite in size. SKcds assumed
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positive definite, then any subHessiH is at the least positive semidefinite. Singéx) is

smooth and continuous , it is F-differentiable and the gradignof 3(a) satisfies
S’ — S(a™) =v" (o — ')
<Gyl —a”| (53)
for someC; > 0. Now strict decrease in the objective function gives
S = S(a™) <0
= () = (@) < S(') - S(a’)
and at optimalityS(a’") = S(a’*). This in turn implies that as — co we have

hm%@%—%@ﬂgﬁmCﬂdthHHO
—00

t—o0

SinceC; > 0 then we must havc;}im |’ — a”*|| = 0. Now for strict decrease we require
S = S <0
Using (33), this gives for some working sef,

S - S

1
= §Aa'TH Ao’ + Aa’TV

1
= 58, Hy Ay + Aag v, <0

1
1 Ty 1 T ’
— Aap v, < _EAO‘p HpAap

By Lemma 4.3 we then deduce

1 ' T ’ 1 1Ty =1,
sup—éAap HpAap:sup—Evp H, v, =0

and thus conclude
T
Aa; v; <0 (54)

is sufficient to guarantee strict decrease in the objective function. This proves (a). To prove (b),
note that by Corollary 4.1, we have (51) if the working set elements have indices corresponding
to the indices sef (E") U I(E™). Consider then the setr = {0 < a; < C}. If v; =0,

the element-wise producko,v; = 0 and does not affem&a;Tv;. It is possible also to find
points withv; < 0 giving Aa; > 0 or v; > 0 giving Aa; < 0 which result inAa,v; < 0.
Hence, selectingy, with indices corresponding ti(E*)UI(E™)UI(ay) ensures (51) holds

and is sufficient to guarantee asymptotic convergence. This completes the proof. =
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The conditions in the lemma above are sufficient but not necessary firstly because it is not
required to hold for every iteration. Asymptotic convergence can still be achieved if we relax
the condition and require it instead to hold for a majority of the iteration. A stronger result
can be derived which contains necessary and sufficient conditions for finite termination (as
defined e.g. Keerthi et. al [11]), but this will be omitted here since we only require conditions
to ensure our algorithm converges. We will make a few remarks. It can be seen that the Newton
step satisfies condition Lemma 4.8 (a) provided the step size satisfies Lemma 4.4(a) and we
only need to be mindful of condition (b) when designing a heuristic rule. In the event that the
kernel matrix is positive semidefinite or indefinite, the Newton step is no longer a guaranteed
direction of descent. We can select another working set with a subHessian matrix that is better
conditioned i.e. the component corresponding to the kernel matrix is better conditioned. If all
possible working sets are exhausted, one may apply a linear direction of descent so that (51)
still holds. This last resort may be required in practice due to computational roundoff errors

or degenerate data.

V. A HEURISTIC FRAMEWORK FOR THEDECOMPOSITIONMETHOD

In order to solve (18), one can use an algorithm which searches through the entire space
of points to find the working set giving the minimum value of (18). We call this the Naive
Search Algorithm which tries to satisfy (18) at each iteration. This algorithm if applied to

the entire space of possible working sets provides the optimal working set at each iteration.

A. The Naive Search Algorithm

In order to ensure asymptotic convergence as per Lemma 4.8, the search spaestricted

to the o-algebra of the set
U= {a;|l(a;) € (EN)UI(E7)UI(aap)}

which for practical purposes is ordered as follows
U={aj,ag,...,ax|E1 > Ey > ... > Ex} (55)

The ordered setJ contains all violaters and non-bound Support Vectors with elements
arranged such that the most positive error is at the top and the most negative error is at
the bottom. This is practical to implement if we have kept an ordered set of errors, namely
E" andE~ (see (32a) and (32b) ). A subscript to indicate the iteration is not required since

we refer toU on a per iteration basis.
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ALGORITHM 1 (The Naive Search Algorithm (N1)):

Initialize o = 0. At each iterationt determine the sdt and letk be the number of elements

in U. Seti, j = 0.
1. i =7+ 1 and selecty; = o; € U.
2. j=j+1andselecty, = o_1_; €U
3. ComputeAa;, Aas.
4. Setf = 1. If ay + Aoy <0 then g, = 32 else ifay + Aay > C thenf; = %‘—;‘11.
5. Setfy = 1. If ay + Aay < 0 then 3, = 322 else if ay + Aay > C then 3, = %‘—(;";.
6. /= min{F, [}
7. Compute the value of (18). If current value is smaller than previous value, store the

indices{i, j}.

8. Goto Step 2 untilj = k. If j =k setj =0 and goto Step 1 until = k.

9. Update only;, a; i.e. which minimizes (18). Update by computingAb usinga;, «;.
UpdateU. If U = () END else:,j = 0 and goto Step 1.

The Naive Algorithm searches all possible combinations of working set and updates the one
which minimizes (18). The algorithm is clearly going to be slow as the data set size increases
due to the increasing combinatorial problem size. This problem would still persist even if a
L, kernel cache is implemented as in most current algorithms e.g. LibSw[ " etc. It
becomes worse if a LRU (least recently used) scheme is implemented on a small kernel cache
because the rows will be consistently replacegiche thrashingwhen searching through the

combinations and computing (18).

B. An Adaptive Search Window

One way to reduce the size of the combinatorial problem and @sbe thrashings to
reduce the dimensionality of the combinatorial problem. A natural reduction has been provided
by using (52) of Lemma 4.8 as the search space. A further reduction in dimensionality can
be done via a search window method. We first defhas a smaller subset &f from which
the working set elements are chosen. From the sensitivity analysis in Lemma 4.7, our first
priority would be to select a working set with a large subgradient norm. This can be done
by selectingy elements off the top and elements off the bottom dfl. The subsef2 now
becomes aearch windowwith size 2v. We need to also allow for degenerate cases, where

sometimes all combinations if2 and heuristics fail to produce an acceptable decrease in
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the objective function. If this occurs, the nexy elements are chosen inf® i.e. the search
window is expanded.

The size of(2 can be made adaptive by using different values &dr different stages of the
iterations. In the early stages of the iteration, a sma#l sufficient as only an approximately
optimal working set is required. As the iteration converges, we would increaserder to
obtain a more optimal working set. In addition, increasinm this manner takes advantage
of the operation of the kernel cache. It is well known that in the later stages of the iteration, a
subset of points consisting mostly of non-bound Support Vectors are still non-optimal. These
points are likely to have their kernel values cached since they have been frequently updated.
Therefore a larger search windo@ at this stage would also reduce the compromise on
computation time since the required values are in the cache. For experimental purposes we
propose first a simple two step adaptation defined as below

Heuristic 5.1 (A Simple Adaptive Window):

if (NE > Tc;)
v = Lg else v = Ug
where we use the following settings

Ng = Number of Violaters
TG =0.1n
Lo =5Ug=20 (56)

The size ofQ2 now becomes time dependant and this may affect the rate of convergence
dramatically in some cases. Better adaptive window techniques are possible and left as further

research issues.

C. Shrinking

The shrinking heuristic first introduced by Joachim’s [5] and then used in LibSVM excludes
updating the gradients or computing the violation of multipliers at the bounds under the
assumption that they stay fixed through out the iteration. Optimality of the excluded variables
are checked at the end and reoptimization is done if any of them were found to become
non-optimal. It is a heuristic meant to improve the run-time speed of the algorithm especially

for large data sets. In our framework, we have opted to leave the shrinking heuristic out
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for comparison and novelty purposes. This gives us an opportunity to investigate how our

proposed heuristics compare against this popular heuristic.

D. Heuristic Framework

In the early stages of the iteration, we believe that it may not be necessary to obtain the
working set which optimizes (18) strictly. Instead we can select an approximately optimal
working set to compromise between searching for the optimal working set and implemen-
tation speed. The introduction of the adaptive search window provides the first step to this
approximation. We now investigate several possible heuristics for a second approximation to
this.

One way to approximately minimize (18) is to maximize the step magnitiide to
minimize the potential of overstep. This would require that we efficiently predict the direction
of motion for each variable. Lemma 4.2 provides us with a rough rule to select a working
set that would most likely give us minimum potential of overstep. The following heuristic
depicts this.

Heuristic 5.2 (Min Potential of Overstep):

Selecta; € U from the top and look for, € U starting from the bottom such that:

a) if oy ={0,C} and E; > 0, selectas, = {0,C} with E, < 0.

b) if oy ={0,C} andE; > 0, selectd < o, < C with E; < 0.

In Heuristic 5.2, the second working set element is selected based on the nature of the
first. The heuristic is two-tiered with the first emphasis on updating bounded violaters and
the second emphasis on pairing a bounded violater with any other violater. The aim is obtain
a pair which has a larger change when updated. We note that a similar heuristic alone has
been used in our previous work [20] with some success. Note that the difference in this
heuristic compared to [20] is that it is not used for pairs of nhon-bound Support Vectors. The
next heuristic deals with this case and reduces the need to exhaustively compute (18). It
approximately selects a better conditioned subHessian.

Heuristic 5.3 (Min n;5):

Assume that in all caseg, > 0 and at some stefj we getQ2 € I(ar). This automatically
excludes the use of Heuristic 5.2.

a) Selecta; € U from the top and look for, € U starting from the bottom. Compute

me and finday, as which minimizesn;,.

b) If using a Gaussian kernel, this can be achieved by maximizing
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For the Gaussian kerneky;; = K5, = 1 for all a;, as SO minimizingn;, can be simplified

as per Heuristic 5.3 (b).

In some stages of the iteration, the step size may be increased or boosted by selecting
G > 1 e.g. [23]. We refer to this aacceleration The range ofs for guaranteed asymptotic
convergence in this case has been given by Lemma 4.4 (a). This technique is sometimes
known as the Newton relaxation method [24] for the case when 1 and the objective
function is a higher order polynomial with several maxima and minima. If wefise 1,
this reduces the step size and is referred tdasping The optimal use of acceleration and
damping in the decomposition setting still remains a research area for us. For now, empirical
evidence indicates that acceleration can be applied in the early stages of the iteration for large
values of C in order to quickly move bounded variables to opposite bounds. It can also be
applied in the stages of the iteration where the step size is relatively too small. We propose

the following general heuristic for both; and .
Heuristic 5.4 (Acceleration):

After applying Heuristic 5.1-5.4, comput&«; and A, without determining3. Then

if (05 €{0,C})
if (|JAai| <0.1C and |Aqs| > 0.01C)

6 =15 else =13

Set A*a; = (*Aq;. Check feasibility of updated iterates and if feasibility violated, scale
A*a; accordingly.

In the final stages of the iteration, we apply the Naive Algorithm to obtain a more op-
timal working set. The difference here is that the Naive Algorithm will only be applied to
combinations formed from elements in the search windewRun-time speed should not
be compromised too much due to the necessary kernel values being in the kernel cache.
Furthermore, computation of (18) can be done with kernel values computed on the fly as to
reduce the potential for cache thrashing. The motivation for refining our search in the final
stages is to reduce the oscillations between variables that are still difficult to determine. We

use the following condition to determine the switch to the Naive Algorithm.

Heuristic 5.5 (Refining the Search via N1):
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if (size(U) < 0.1n or (max E; — min E;) < 1.0)

Apply N1 to 2

E. Termination Criteria

The conditionmax F; — min F; described in Heuristic 5.5 is also known as thelation
gap[25]. It has been used for finite termination of the LibSVM algorithm where the algorithm
terminates if the gap size is zef®VM"e" instead checks that all examples satisfy the KKT
conditions within a practical tolerance. One can now see that Heuristic 5.5 operates as the
algorithm approaches optimality. Another method is to compare the difference between the
primal SVM problem and the dual SVM problem [14], [26]. We have used the first two
methods in this framework since it saves us monitoring the primal and dual values and

further allows a fair comparison between current algorithms.

F. Block Diagram of the basic Heuristic Framework

We now connect all the previously described heuristics into a single framework. The
flowchart depicting how Heuristic 5.1-5.4 are utilitized in the heuristic framework are given
in Fig 3. The initialization involves reading the dataset, allocating memory and initializing
all necessary variables. The framework is then used for selecting the working set to update
at each iteration. The first step is to check for non-optimal points which violate the KKT
conditions (8) within a certain practical toleranceThen the setU is determined.

In the "AdaptiveS2” block, ~ is adjusted using Heuristic 5.1 and the corresponding elements
selected into the search windo@®. The "Scan2” block starts by scanning the possible
combinations ofc; and a, starting with «; corresponding to the most positive, in €2
and F, the most negative. Heuristic 5.2 is applied if while scanning a pair of violaters at
bounds (BSV) i.eqa; = {0,C} are found then Heuristic 5.4 is applied. If all violaters in
2 are non-bounded Support Vectors (NBSV) then Heuristic 5.3 is applied. After the pair
Is selected, the "Update Step” is done. The "Update Step” calculates the new values of the
working set, updates all the training errors and also the pseudo Lagrabgideuristic 5.5
Is applied during the final stages of the iteration and not shown explicitly in the flow chart.

The algorithm then terminates when the termination criteria are met.
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Select min | All violating
Ni2 D NBSV
A
NO
! YES
SUCCESS ——
Update |, | Compute P Violating
Step ~ | Acceleration [~ BSV+NBSV
FAIL “
b)
! YES |
Init Check for | | Adaptive .| Scan | Min Potential
"| Violators g [9) " o) "| of Overstep
START * | NONE T FalL
a)
END —Y—
Update | Compute P Violating
Step Acceleration BSV pair

SUCCESS

Fig. 3. A flowchart detailing the operation of proposed the heuristic framework

VI. EXPERIMENTAL METHOD AND DISCUSSION

We implement our SVM program called D2C-SVM (Data to Classification) in Visual C++
6.0 and all experiments were carried out on a Pentium 1V, 1.5 GHz computer with 256MB
RAM. We compare our implementation against the currently popular optimization software,
namely LibSVM (v.2.78) [27] an&VM"* (v.6.1F. The SVM!s™ algorithm uses a working
set selection rule which searches for maximal violating pairs and applies an update rule
based on steepest search. LibSVM (v.2.78) combines the SMO update rule 9NN
working set selection rule. These two algorithms use the same fixed selection rule throughout
the optimization process. Our D2C program implements the heuristic framework in Fig 3
to select working sets. The standard tolerance ef 0.001 was used for the terminating
condition and kernel cache size was set to 120MB for all algorithms.

We record the number of iterations which indicate the length of the sequence of sub-
problems successfully solved. The CPU run-times denote the practicality of the algorithm
implementations. We now define the following basic ratios which we will use as bench-

mark indicators to measure the performance of the D2C heuristic framework against current

2http://svmlight.joachims.org/
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algorithms. The following definitions will be used

T;= CPU run time in seconds for Algorithm i
I;= Number of iterations for Algorithm i
NBSV = Total Free Support Vectors i.6.< a; < C

BSV= Total Support Vectors at bounds ie; = C

Let C'I, be theiteration ratio for Algorithm 1 against Algorithm 2 is defined as

I

Clyo=
L A

(57)

The run-time ratio CT';, for Algorithm 1 against Algorithm 2 is defined as

T

CTio=
2 T, + T

(58)

The performance index;, for Algorithm 1 against Algorithm 2 is defined as

. L(Ty+Ty) + T (1 + )
12=
2(Ty + to) (11 + 1)
 Clip+CTyy
B 2

(59)

If 112 = 0.5 then we say that both Algorithm 1 and Algorithm 2 have almost similar
performance. Ifu5 < 0.5 we say that Algorithm 1 performs better than Algorithm 2. A
value of 15 > 0.5 indicates that Algorithm 2 outperforms Algorithm 1. The performance
index 1o can also be interpreted as how well a particular algorithm compares to another
in striking a balance between improving the convergence rate (theoretical) and the run-time
speed (practical). We also introduce a measure of difficulty of the problem defined as

NBSV

~ NBSV + BSV (60)

v

This is done in the view that the decomposition method has trouble determining the free
variables i.e. NBSV [10]. A value closer to unity indicates a problem that is more difficult. In

all cases, Algorithm 1 is taken as our D2C heuristic framework and comparisons made against
the other state of the art decomposition algorithms. We present some initial performance results

over some popular benchmark data sets.

A. Performance over UCI benchmark data

We first test our algorithm on the UCI benchmark data sets which have been widely used

to benchmark decomposition algorithms e.g. SMO [4]. The benchmark dataset we use is the
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UCI 1 to 9 adult dataset [28] with sizes approximately ranging from 1000-40000 points.
For illustration purposes, we compare the D2C algorithm against the full Naive Algorithm
(N1) on the first three Adult datasets (see Table Il). Then four sets of benchmarks were done
comparing our algorithm againSt/M"s" and LibSVM. The performance results are reported

in Table HI-VI.

B. Run Time performance over kernel and C parameters

In this experiment, we employ the large UCI adult 9 dataset and use the Gaussian kernel.
For the Gaussian kernel, we vary the kernel widthover a rangel > o2 > 100 across a
range of SVM parameters of C whebel < C' < 100. The results are plotted on a log-scale

graph in Fig 4-Fig 5 for comparison against LibSVM agdM"e"*,

C. Performance over poorly conditioned data

The purpose of this experiment is to show that choosing a working set with a well
conditioned subHessian results in improved theoretical convergence rates. We employ the
UCI Web data set for this experiment which consists of 8 datasets in increasing size. These
datasets contain examples with no attributes as well as missing attributes resulting in an overall

poorly condition Hessian matrix. The performance results are reported in Table VII-X.

D. Discussion of Results

From Table I, it is clear that the Naive Search Algorithm chooses the optimal working set
for (18) as depicted by the lower number of iterations. However, as expected the computational
run-time increases tenfold, until it becomes impractical to search for the optimal working
set at each iteration. In the benchmarks on the UCI Adult datasets, the heuristics in our
algorithm achieve on average a 30% reduction in the number of iterations compared to
LibSVM and SVM'® (see Table 11I-VI). The proposed Heuristics 5.2-5.5 provided a better
approximation to the optimal working set rule instead of only searching for maximal violating
pairs. For the poorly conditioned data sets, our D2C algorithm converges in approximately one
third of the number of iterations than LibSVM arsd/M"" This indicates that improving
the approximation to the optimal value of (18) at each iteration increases the theoretical
convergence rate (see Table VII-X).

For the run-time performance, we observed that our heuristic framework was on average

faster than the shrinking heuristic used by LIBSVM &¥M"s™ for the benchmarks on the
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UCI adult data set (Table IlI-VI). The results in Fig 4-Fig 5 seem to confirm this further
when we test the largest dataset over a range of Gaussian kernel and C parameters sometimes
achieving an improvement over an order of magnitude. This is surprising considering the fact
that the shrinking heuristic causes both LIBSVM asidM"s™ to update a smaller set of
gradients as convergence is reached. The overall effect should be a shorter training time for
larger datasets. We note that the two benchmarks on the UCI Adult set test both extremes of
the problem difficulty,», so the number of free variables is not a contributing factor to this
observation as noted by [10]. In contrast however, the shrinking heuristic resulted in faster
run time for LIBSVM andSVM"#" over the UCI web data set benchmarks (Table VII-X).
Even though, the D2C algorithm selected a more optimal working set, its slower run-time
performance resulted in a poorer performance ingex.against the other algorithms. Again,

it can be seen that the problem difficulty, did not seem to be a contributing factor.

On further investigation, we found that the shrinking heuristic was useful for problems
where only a small subset of multipliers were updated during the entire iteration. In the UCI
Adult benchmarks, we noted that on average 70% of the variables i.e. Lagrangian multipliers,
were updated and the kernel cache was fully utilized. This is in stark contrast to the UCI
Web benchmarks where on average only 25% of the points were updated (the other 75%
do not violate the constraints during optimization). Since variables that are "shrunk” need
their gradients to be recomputed and changes to be stored, a larger percentage of changing
points and inaccurate shrinking would naturally require more computational time and slow
the algorithm down. We deduce then that in these situations, the shrinking heuristic could be
replaced with Heuristic 5.2-5.5 to obtain a better run-time performance. In retrospect, if only
a small fraction of points are updated during the optimization then Heuristic 5.2-5.5 should

be coupled with the shrinking heuristic to improve overall algorithm performance.

Heuristic 5.2 and 5.3 try to obtain the working set which approximately solves (18) within
the search window controlled by Heuristic 5.1. The acceleration applied in Heuristic 5.4
boosts small step sizes but we observed that in Table VI and Table X where there is a
significant range in problem difficulty,,, acceleration worked better for smaller values of
v12. This observation can be explained as follows. A more difficult problem has a large
number of working sets composed of free Support Vectors. As convergence is approached,
it is less likely that the free Support Vectors will become bounded Support Vectors. The

feasible regions of the subproblems corresponding to these working sets then look more and
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more like ™ and hence an unconstrained Newton step/.e: 1 provides the optimal step

size. Applying acceleration in these cases will result in a suboptimal step and hence slow
convergence. We summarize the merits and demerits of the individual heuristics discussed in
Table I.

We note that several other optimization techniques modify the original cost function by
introducing barrier and penalty functions [29] into the cost to account for constraint violation.
These methods have been minimally explored in the decomposition setting but they already
face problems if the optimal solution contained variables at bounds as these methods prevent
the variables from reaching the boundaries. To this end, we point out that the diversity of
datasets makes using any one fixed heuristic rather myopic in foresight. The extra degree
of freedom in choosing the working set at each iteration affords an algorithm which should
adapt to the problem. We believe that this is increasingly important when applying the Support
Vector Machine to online applications. In this work, we have described a heuristic framework
which has the initial workings of an adaptive algorithm. Further research will concentrate on
expanding the adaptive nature of this framework in order to increase the effectiveness of the

decomposition method for training Support Vector Machines.

VIlI. CONCLUSION

In this paper, we describe a heuristic framework for the decomposition method for training
Support Vector Machines. We first provide some theoretical analysis concerning the working

set problem. Based on these results, we then proposed a series of heuristics which not only

TABLE |

COMPARISON OF ADVANTAGES AND DISADVANTAGES OF HEURISTICS

Heuristic Advantage Disadvantage
Shrinking Improves implementation run-time if Slow if recomputation of gradient occurs often.
majority of points stay optimal. May require more iterations if wrong points are shrunk.

Adaptive Search Window Reduces search space for working set. Success dependant on adaptation of window size.
Min Potential Overstep Assists in obtaining working sets Does not work if all violaters are NBSV.

with larger step sizes.

Min 712 Approximates the Naive Algorithm. Does not work well if data is degenerate.
Acceleration/Damping Boosts small step sizes in initial Does not work well if in final iterations only
and final iterations. NBSVs remain.

Naive Algorithm Requires fewer number of iterations. Very slow as problem size increases.
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select a better sequence of working sets but which also improves algorithm run times. The use

of heuristics is further motivated by the fact that improving the theoretical convergence rates

resulted in a degradation of run-time performance. Benchmark tests reveal that the proposed

heuristics can increase the performance of the decomposition algorithm in terms of iterations

and computation run-time compared to current algorithms.
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TABLE I

COMPARISON OF PERFORMANCE FOR TRAININGJCI ADULT BENCHMARKS ON GAUSSIAN KERNEL WITH C' = 1 AND

02 = 10. ALGORITHM 1 1S D2C AND ALGORITHM 2 IS THE NAIVE SEARCH ALGORITHM (N1)

DataSet Size Th T I 1>
Adult1 1605 0.48 56.53 611 598
Adult2 2265 1.00 166.65 965 871
Adult 3 3185 1.92 609.81 1271 1210
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TABLE 1l
COMPARISON OF PERFORMANCE FOR TRAININGJCI| ADULT BENCHMARKS ON GAUSSIAN KERNEL WITH C' = 1 AND

02 = 10. ALGORITHM 1 1S D2C AND ALGORITHM 2 1S LIBSVM

Size Ty T Iy Iz Clhis CTi2 p12  vi2

1605 0.48 0.63 611 956 039 044 041 0.15
2265 1.00 1.52 965 1552 038 040 0.39 0.16
3185 1.92 3.34 1271 1943 040 036 038 0.14
4781 4.33 9.45 1835 2848 039 031 035 0.12

6414 7.89 19.80 2423 4078 037 029 0.33 0.12
11220 25.39 56.31 4364 7442 037 031 034 0.10
16100 53.91 94.17 6434 10283 0.38 036 0.37 0.09
22697 103.42 169.25 9563 15709 0.38 0.38 0.38 0.09
32561 217.22 329.48 14934 24738 038 040 0.39 0.08

TABLE IV
COMPARISON OF PERFORMANCE FOR TRAININGJCI ADULT BENCHMARKS ON LINEAR KERNEL WITH C' = 0.05.

ALGORITHM 11Ss D2C AND ALGORITHM 2 1S LIBSVM

Size T: T> I, 1> Clia CTi2 p12 Vi
1605 0.41 0.39 627 979 039 051 045 0.94
2265 0.81 1.08 860 1625 035 043 039 0.95
3185 1.66 2.59 1247 2114 037 039 0.38 0.96
4781 3.72 7.52 1722 2620 040 033 0.36 0.97
6414 6.50 26.88 2187 3419 039 019 0.29 0.97
11220 20.80 4759 3794 5456 041 030 0.36 0.98
16100 42.19 7556 5289 6522 045 0.36 0.40 0.99
22697 86.25 146.47 7037 11558 0.38 0.37 0.37 0.99
32561 162.98 253.63 9397 15700 037 039 0.38 0.99
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TABLE V

35

COMPARISON OF PERFORMANCE FOR TRAININGJCI| ADULT BENCHMARKS ON GAUSSIAN KERNEL WITH C' = 1 AND

2 =10. ALGORITHM 1 1S D2C AND ALGORITHM 2 IS SVM!isht

Size Ty T Iy Iz Clhis CTi2 p12  vi2
1605 0.48 0.86 611 822 043 036 039 0.15
2265 1.00 1.99 965 1487 039 033 0.36 0.16
3185 1.92 3.58 1271 1765 042 035 038 0.14
4781 4.33 7.85 1835 2575 042 036 039 0.12
6414 7.89 15.97 2423 3886 038 033 036 0.12

11220 25.39 97.97 4364 6893 039 021 030 0.10

16100 53.91 175.64 6434 9714 040 023 0.32 0.09

22697 103.42 33358 9563 14504 040 024 0.32 0.09

32561 217.22 67258 14934 21331 041 024 0.33 0.08
TABLE VI

COMPARISON OF PERFORMANCE FOR TRAININGJCI ADULT BENCHMARKS ON LINEAR KERNEL WITH C' = 0.05.

ALGORITHM 1 1S D2C AND ALGORITHM 2 IS SVM'&ht

Size T T> I, 1> Clia CTi2 p12 Vi
1605 0.41 0.17 627 819 0.43 070 057 0.94
2265 0.81 0.52 860 1200 042 061 051 0.95
3185 1.66 1.05 1247 1858 040 0.61 051 0.96
4781 3.72 2.4 1722 2483 041 061 051 0.97
6414 6.50 4.18 2187 3071 042 061 051 0.97

11220 20.80 1321 3794 4635 045 061 0.53 0.98
16100 42.19 30.08 5289 7015 043 058 0.51 0.99
22697 86.25 60.06 7037 10281 041 059 050 0.99
32561 162.98 129.39 9397 14196 040 056 048 0.99
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100
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Fig. 4. Comparison of run-time performance (seconds) against LibSVM for training UCI Adult 9 using Gaussian kernel

over a range of C. Left to Rightr? = 1, 10, 100.
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——D2C - - = - -SVMIlight
1000.00 4
100.00
0.1 0.5 1 10 100 c
100000.00 -
——D2C - - &- - -SVMlight -
10000.00 -
1000.00 4
100.00
0.1 0.5 1 10 100 c
10000.00
——D2C - - = - -SVMilight -
1000.00 -
100.00
0.1 0.5 1 10 100 c

Fig. 5. Comparison of run-time performance (seconds) ag&wat's™ for training UCI Adult 9 using Gaussian kernel

over a range of C. Left to Rightt? = 1,10, 100.
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TABLE VII
COMPARISON OF PERFORMANCE FOR TRAININGJCI| WEB BENCHMARKS ONGAUSSIAN KERNEL WITH C' = 5 AND

o2 =10. ALGORITHM 115 D2C AND ALGORITHM 2 1S LIBSVM

Size Ty T I I Clia CTi2 jpi2 vi2
2477 2.13 0.63 1738 3104 0.36 0.77 0.57 0.89

3470 4.20 1.20 2396 3481 041 0.78 059 0.88
4912 6.19 2.17 2833 3803 043 074 058 0.86
7366 11.83 4.80 4143 6402 039 071 055 0.85
9888 18.61 8.39 5260 7390 042 069 055 0.84
17188 44.92 57.31 8913 11206 0.44 044 044 0.78
24692 91.20 107.39 11886 13519 047 046 046 0.76
49749 580.77 373.50 18263 20840 0.47 0.61 0.54 0.69

TABLE VIII
COMPARISON OF PERFORMANCE FOR TRAININGCI WEB BENCHMARKS ONLINEAR KERNEL WITH C = 1.

ALGORITHM 11S D2C AND ALGORITHM 2 1S LIBSVM

Size Th T I 12 Clis CTi2 p12  vi2

2477 0.84 0.27 1811 5161 026 076 051 0.75
3470 2.19 0.63 3217 8698 0.27 078 0.52 0.66
4912 6.64 1.09 6646 12475 035 086 0.60 0.60

7366 12.55 2.59 9863 37744 021 083 052 0.1
9888 25.28 4.69 13435 32956 0.29 084 057 0.43
17188 41.97 1555 20269 103225 0.16 0.73 045 0.31
24692  87.73 32.11 30503 146846 0.17 0.73 045 0.24
49749 337.84 187.72 48340 235591 0.17 0.64 041 0.15
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TABLE IX
COMPARISON OF PERFORMANCE FOR TRAININGJCI| WEB BENCHMARKS ONGAUSSIAN KERNEL WITH C' = 5 AND

o2 = 10. ALGORITHM 115 D2C AND ALGORITHM 2 IS SVM'ight

Size Ty T I I Clia CTi2 jpi2 vi2
2477 2.13 1.44 1738 2764 039 060 049 0.89
3470 4.20 2.56 2396 3187 043 0.62 053 0.88
4912 6.19 4.3 2833 3803 043 059 051 0.86
7366  11.83 10.63 4143 6402 039 053 046 0.85
0888 18.61 22.75 5260 7390 042 045 043 084

17188 44.92 73.63 8913 11206 0.44 038 041 0.78
24692 91.20 143.86 11886 13519 047 039 043 0.76
49749 580.77 551.58 18263 20640 047 051 049 0.69

TABLE X
COMPARISON OF PERFORMANCE FOR TRAININGCI WEB BENCHMARKS ONLINEAR KERNEL WITH C = 1.

ALGORITHM 1 1S D2C AND ALGORITHM 2 1S SVM'ight

Size Th T I 12 Clis CTi2 p12  vi2
2477 0.84 0.52 1811 5552 025 062 043 0.75
3470 219 0.85 3217 7857 029 072 051 0.66
4912 6.64 1.47 6646 11591 036 082 0.59 0.60
7366  12.55 3.85 9863 29194 025 0.77 051 0.51
0888 25.28 4.41 13435 21219 039 085 0.62 0.43

17188 41.97 17.92 20269 63469 0.24 0.70 047 031
24692  87.73 34.39 30503 67856 031 072 051 0.24
49749 337.84 106.83 48340 107681 031 0.76 0.53 0.15




