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Abstract

Support Vector Machines are a form of binary classifier which requires optimization of a

constrained quadratic program. When used to classify large data with limited processing memory,

the main problem can be decomposed into smaller sub-problems which are then solved sequentially.

However, the speed of this method depends on the sequence of sub-problems solved. In this paper,

we propose a heuristic framework to select the sequence of sub-problems for faster convergence. The

framework is based on the idea of maximizing the change in the objective function at each iteration.

We provide a sufficient condition for any heuristic rule to guarantee asymptotic convergence of the

decomposition method. The heuristics are then applied to benchmark data and show a consistent

improvement in performance over current state of the art decomposition algorithms such asSVMlight

and LibSVM .

Index Terms

Support Vector Machines, classification, decomposition, inequality constraints, working set se-

lection.

I. I NTRODUCTION

The Support Vector Machines (SVM) developed by Vapnik [1] have been shown to be a

powerful supervised learning tool for pattern recognition problems. The data to be classified

is usually written as:

Θ = {(x1, y1) , (x2, y2) ... (xn, yn)}
xi ∈ <m

yi ∈ {−1, 1}
(1)

The SVM formulation is essentially a regularized minimization problem leading to the use

of Lagrangian Theory and quadratic programming techniques. The formulation defines a

boundary separating two classes in the form of a linear hyperplane in data space where the

distance between the boundaries of the two classes and the hyperplane is known as the margin.

The idea is further extended for data that is not linearly separable by first mapping it (via

a nonlinear function) to a possibly higher dimension feature space. The nonlinear function,
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usually defined asφ(x) : x ⊂ <n → <m, n << m is never explicitly used in the calculation.

The Lagrangian dual problem expressed solely in terms of Lagrange multipliers,αi namely:

= (α)
min α∈D

=
1

2
αT Gα−αT e

D ={α|0 ≤ αi ≤ C, αT y = 0} (2)

is usually solved, where

Gij = yiyjK(xi, xj)

e = {1, 1, ..., 1}

Explicit use of the nonlinear functionφ(.), has been avoided through the use of a kernel

function, defined formally as the dot products of the nonlinear functions

K(xi, xj) =< φ(xi), φ(xj) > (3)

We assume a Mercer kernel which is positive definite. The trained classifier then has the

following form:

f (x) = sgn

(
n∑

i=1

αiyiK (x, xi) + b

)
(4)

We will solve the following partitioned SVM problem via sequential decomposition using a

projected Newton method

min
αp

max
b
= (

α′
p

)
=

1

2


α′

p

αs




T
Hp H∗

HT
∗ Gs




α′

p

αs




−

α′

p

αs




T
e′p

es


 (5)

subject to:

Dp = {αp|0 ≤ αp ≤ C1}

whereb ∈ <, is now treated as a pseudo-Lagrangian multiplier [2]. The partitioned matrices

are

G =


 Gp G∗

GT
∗ Gs


 Hp =


 Gp yp

yT
p 0


 H∗ =


 G∗

yT
s




and the augmented vectors are

α′
p =


αp

b


 e′p =


 ep

0
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The vectorα′
p is known as theworking setand Hp is the subHessiancorresponding to the

working set. Note that the gradient vector corresponding to the sub-problem is

v′p =Hpα
′
p + H∗αs − e′p (6)

and the resulting Newton update is

α′t+1
p = α′t

p − βH−1
p v′p (7)

where thestep magnitudeβ is selected to ensureα′t+1
p ∈ D. Every element of the solution

vectorα must satisfy the corresponding Karush-Kuhn-Tucker ( KKT ) conditions

yif(xi)≥ 1 if αi = 0 (8a)

yif(xi)≤ 1 if αi = C (8b)

yif(xi)= 1 if 0 < αi < C (8c)

The decomposition method is generally applied in situations where computing memory

is limited. The method decomposes the main problem into a series of sub-problems which

are then solved sequentially where a sub-problem is identified by the corresponding set of

variables known asworking setsin SVM literature. Osuna [3] is credited as the earliest

to apply a form of this method which he calledchunkingto solve face detection problems

using SVMs. Later algorithms such as SMO [4] andSVMlight [5] selected working sets

based on approximately maximizing the step size. It has been recognized by Joachims [5],

Lin and Hsu [6] and Chang [7] that the choice of working sets is central to the speed of

the decomposition method. Lin [8], [9] showed that working sets chosen in the manner of

SVMlight resulted in a linear convergence rate. This was empirically confirmed by Laskov [10]

who further showed that decomposition was sometimes faster than optimization on the entire

problem space. The finite termination of SMO type algorithms has been proven by Keerthi and

Gilbert [11] using a counting method. A general assumption is that the rate of convergence

is proportional to the rate of improvement to the objective function [10]. In [12], we showed

how the inequality constraints should be taken into account when selecting a working set in

order to get better improvement to the objective function.

In this paper, we propose a heuristic framework for selecting working sets. The use of

heuristics delivers a compromise between achieving faster theoretical convergence rates and

efficient practical implementations. Our framework will be composed of semi-adaptive type

heuristics which will be applied according to the properties of the dataset. In Section II,
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we first begin by describing our notation and several well known results. Section III briefly

outlines the working set problem and the use of the objective function as a merit function

for choosing the working set. This is followed by some theoretical analysis on the projected

Newton method in the decomposition setting. The exposition is necessary to motivate our

design of the heuristic algorithm. We also derive a sufficient condition for a heuristic rule

to guarantee asymptotic convergence of the heuristic algorithm. In Section V, we discuss

the basic implementation of the framework and link our previous analysis to the described

heuristics. We then run our proposed algorithm on several benchmark data sets and compare

its performance against current state of the art algorithms i.e.SVMlight and LibSVM. We use

the standard notation where scalars are denoted by italics, column vectors by boldface small

letters and matrices by boldface capitals.

II. PRELIMINARIES AND NOTATION

The vector of variablesα′ ∈ <n+1 wheren is the size of our data setΘ is

α′ = {α1, ..., αn, b}

The working set, α′
p is a subset ofα′ where

α′
p = {αp1 , ..., αpk

, b}

Throughout, we let the subscriptp denote the selected working set whiles indicates variables

that do not change i.e. static during the optimization step. The subscripts also indicate the

size of the vectors and the matrices e.g. ifαp ∈ <m then Gp ∈ <m×m. The notationα′
p

denotes the augmented working set which includes the pseudo-Lagrangianb. Now let the

setA denote the sigma algebra of working sets i.e. it contains all possible combinations of

working sets so that∀p we haveα′
p ⊆ A . Since most of the state of the art decomposition

algorithms e.g. SMO, LIBSVM,SVMlight modify a small working set size we restrict our

working set to the elements

α′
p ={α1, α2, b} (9)

Let ∆z = zt+1 − zt then (7) written element wise is

∆α1 =β
y1(y2v2 − y1v1 + (K21 −K22)vb)

η12

(10a)

∆α2 =β
y2(y1v1 − y2v2 + (K11 −K12)vb)

η12

(10b)

∆b =β [(K21 −K22)y1v1 + (K12 −K11)y2v2

+(K11K22 −K12K21)vb] (10c)
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where due to the symmetric kernel function:

η12 = − det Hp =K11 + K22 − 2K12 (11)

and0 < β < 1 is selected so that the updated working set satisfies the individual constraints

i.e. α′t+1
p ∈ Dp. The corresponding element gradients are then

v′p ={v1, v2, vb} (12)

The error of a training example is defined as

Ei = yivi (13)

and during optimization, the violating points i.e. points that do not satisfy the KKT conditions,

can be grouped according to the sign of the errors. The error indices sets are

I(E+) ={i|αi > 0, vi > 0, yi = 1}∪

{i|αi < C, vi < 0, yi = −1}

I(E−) ={i|αi > 0, vi > 0, yi = −1}∪

{i|αi < C, vi < 0, yi = 1}

The general change in objective function [12] with respect to a working setα′
p ⊆ A is

M(α′
p) =

1

2
∆α′

p
T Hp∆α′

p + ∆α′
p

T v′p (14)

The Frobenius norm or Euclidean matrix norm is defined for am× n matrix H as

‖H‖F =

√√√√
m∑

i=1

n∑
j=1

|Hij|2

When n = 1 this becomes the standardL2-norm for vectors also known as the Euclidean

vector norm.Holder’s inequality(see for example [13]) states that for anyx, y ∈ <n

|xT y| ≤ ‖x‖p‖y‖q
1

p
+

1

q
= 1

where the norms arep-norms defined as

‖x‖p = (|x1|p + |x2|p + . . . + |xn|p)
1
p

If the Euclidean norm is used, then the inequality is also known as theCauchy-Schwartz

inequality.
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III. T HE WORKING SET PROBLEM DEFINITION

The decomposition method presents an extra degree of freedom compared to standard

Quadratic Programming programs e.g. LOQO [14], active set methods [15] in that one has

the choice of selecting which working set to update at each iteration. In order to achieve re-

spectable convergence rates, one generally requires a merit function to measure the optimality

of the working set choice. A standard merit function employed in optimization is the change

in objective function. The reason we would use this form of merit function is summarized

by the following assumption

Assumption3.1: Let T = [0, t] denote the period of iteration and assume that in this

period,T the rate of convergence is proportional to the change in the objective function.

In order words, we assume to get better convergence rates if we make the best progress

possible towards the minimum of the objective function at every iteration. This written

mathematically for every iteration step,t results in the following problem

min
α′p∈A

1

2
∆α′

p
T Hp∆α′

p + ∆α′
p

T v′p (15)

where thestep size∆α′
p is selected such thatα′t+1

p ∈ Dp and (15) is the change in the

objective function for the SVM problem (2). This then becomes a combinatorial problem

which needs to be solved at each iteration step until all KKT conditions or some criteria for

finite termination is satisfied. Joachim’s [5] bases hisSVMlight algorithm on solving

min
α′p∈A

∆α′
p

T v′p (16)

where again the step size∆α′
p is selected to ensure feasibility. Problem (15) means searching

for the working set which minimizes i.e. largest negative change in the objective function

under Assumption 3.1. While solving (16) means finding the working set that gives largest

change toα′ in the direction of steepest descent. Both methods are similar in nature. In our

case, using the projected Newton method and substituting (7) reduces both (15) and (16) to

the following problem

min
α′p∈A

−cpv′
T
p H−1

p v′p (17)

wherecp is some positive constant i.e.cp > 0 to ensure feasibility of the updated working

set. For our working set size, it will be shown later that (17) can be simplified further under

certain initial conditions to

min
α′p∈A

(
β2

2
− β

)
(E2 − E1)

2

η12

(18)
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From (15) it can be seen that the change in the objective function depends on the choice of

the working set. Once the working set is selected, the magnitude of change in the objective

function can be maximized by obtaining the largest step size∆α′
p. One may now conclude

that the two immediate factors to improving the speed of the decomposition method are the

choice of working set sequence and the update rule applied. However, neither the forward nor

backwards Dynamic Programming methods [16] are suitable to be applied because all possible

working set combinations have to be considered at each iteration. Instead of obtaining the

optimal sequence of working sets, algorithms like SMO,SVMlight, LIBSVM and so on select

working sets that approximately solve either (15) or (16). The smaller the number of iterations

required, the better the theoretical convergence properties of the algorithm. Unfortunately, as

we will demonstrate later, refining our search for the optimal working set at each iteration can

compromise on the implementation run-time. We are thus interested in finding a compromise

between these two opposing factors in designing an algorithm. The long term objective is to

enhance the training times for Support Vector Machines so that they become more practical

for large datasets. In the following, we propose the design of a basic heuristic framework

with the objective of updating a shorter sequence of working sets as well as maintaining an

acceptable if not better implementation run-time. The framework will be designed based on

the view (see for example [17]) that specific problems require specialized techniques which

take advantage of the problem structure, something that general optimization methods are

unable to do.

In the following section, we provide some theoretical analysis to the minimization of (18).

The results will be used to motivate the individual heuristics and the design of the heuristic

framework. The initial fixation with the projected Newton rule coincides with the quadratic

nature of the objective function and its quadratic convergence properties. We note however

that the analysis can be extended easily to other update rules e.g. gradient descent, conjugate

gradients etc.

IV. T HEORETICAL ANALYSIS OF THE WORKING SET PROBLEM

The purpose of this section is two-fold. First, we investigate the different components of

the combinatorial problem (18) and establish some minor results. These are then used to

compute the sensitivity of (18) with the aim of investigating which components play a bigger

role. Then a sufficient condition is derived which needs to be satisfied by any heuristic rule

to guarantee asymptotic convergence.
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Fig. 1. The situation shown if the update step is positive and results inαt+1
p (i) > UB. The potential overstepτ p,i and

distance to bounddp,i is positive.

Fig. 2. The situation shown if the update step isLB < αt+1
p (i) < UB. The potential overstepτ p,i is zero.

A. The effects of the inequality constraint set

Since this is a constrained quadratic problem, we expect the constraint set to affect the

change in objective function. In line search algorithms, this has been implicitly done by

adjusting the step magnitudeβ to maintain feasibility [15], [18], [19]. In order to study their

effects, we proposed a method to quantify them. The structure of the inequality constraint

set allows us to model their effect using a simple parameterτ p,i called thepotential of

overstep[12]. In relation to the Newton rule, this quantity models the amount of overstep

if the update causes thei-th variable to violate the constraint bounds. Fig 1-Fig 2 illustrates

the idea with respect to general upper (UB) and (LB) lower bounds. The distance to bounds

dp,i measures the closeness of a variable to the bound. Mathematically, the two quantities are

related by

τ p,i =




−H−1

p,i v
′
p − dp,i αt+1

i > UB,αt+1
i < LB

0 LB ≤ αt+1
i ≤ UB

The augmented vector of potential overstep can be written as

τ ′p = −H−1
p v′p − d′p (19)

whered′p = {dp, db}. The scalardb = 0 is for mathematical convenience sinceb is treated as

a working set variable. Note thatb is unbounded and so the notion of overstepping does not
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apply. The constrained Newton update (7) rewritten in terms of the potential of overstep is

then

α′t+1
p = α′t

p − H−1
p v′p − τ ′p (20)

which ensures thatαt+1
p ∈ Dp minimizes the corresponding term in (5).

For our case of applying a projected Newton step, we project the updated iterate back into

the feasible region by scaling the step size∆α′
p so that only one multiplier is allowed to

reach the bounds. Then the step magnitudeβ can be replaced as follows

−βH−1
p v′p= −H−1

p v′p − τ ′p

τ ′p= (β − 1)H−1
p v′p (21)

We define the sets

A=

{
C − αt

i

∆αi

|i ∈ I(αp), α
t+1
i > UB

}

B=

{
− αt

i

∆αi

|i ∈ I(αp), α
t+1
i < LB

}

Let a = min Ai ∈ A and b = min Bi ∈ B. The scaled distance to bounds is now

dp,i =−min {a, b}H−1
p,i v

′
p

One may also notice thatβ = min {a, b} and we have thus described how to obtainβ.

The following minor result shows that under a certain initial condition, the gradient with

respect to the pseudo Lagrangianb remains static.

Lemma 4.1:Suppose that we select the working setα′
p such that

I({αi1 , αi2 , b}) = {i1, i2, b|i1, i2 ∈ I(E), b ∈ <} (22)

whereE = {yivi} for all i = 1 . . . n. Assume fort = 0, αi = 0 for all i = 1 . . . n. If for

any α′
p we apply (10a) to (10c) then for allt ≥ 0 we havevb = 0. Furthermore, if for some

t = tk , vb = 0 then for all t > tk we havevb = 0.

Proof: First, by differentiating (5) with respect to the thresholdb, we have

vb = yi1αi1 + yi2αi2

From initial conditions, the lemma is proved trivially fort = 0. Now for t > 0, the change

in the gradient is linear and can be written simply as

∆vb = vt+1
b − vt

b = yi1∆αi1 + yi2∆αi2
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Substituting with (10a) and (10b) we obtain

∆vb =yi1∆αi1 + yi2∆αi2

=β
y2

i1
(yi2vi2 − yi1vi1 + (Ki2i1 −Ki2i2)vb)

ηi1i2

+β
y2

i2
(yi1vi1 − yi2vi2 + (Ki1i1 −Ki2i1)vb)

ηi1i2

=
β(Ki1i1 −Ki2i2)vb

ηi1i2

Sincevb = 0 at t = 0 , then∆vb = 0 for t = 1 and v1
b = 0. Then by induction, we have

vt
b = 0 for all t > 0. Now sincet is arbitrary, lett = t′ − tk and the lemma holds also for

t′ = tk.

The following result shows that under a certain selection rule, the elements which are likely

to haveτ ′p > 0 can be identified.

Lemma 4.2:Let the variables of a working set be denoted byα′
p = {αi1 , αi2 , b} and assume

we use a positive definite kernel with initial conditionα = 0. Suppose that we select the

working set such that

I(α′
p) = {i1, i2, b|i1 ∈ I(E+), i2 ∈ I(E−)} (23)

and the update rule of (10a)-(10c) then we have

a) If vi < 0 andαt
i = 0 thenαt+1

i → UB.

b) If vi > 0 andαt
i = C thenαt+1

i → LB.

c) If 0 < αt
i < C andvi > 0 thenαt+1

i → LB while if vi < 0 thenαt+1
i → UB

where motion of violaters when updated in relation to the bounds is denoted by ”→”.

Proof: First note that the pseudo Lagrangianb is an unbounded variable and hence is not

considered here. By Lemma 4.1, the initial condition ofα = 0 impliesvb = 0 always1 which

means that the updates can be simplified. Now consider the element-wise updates written in

the following manner

∆αi1 =yi1d (24a)

∆αi2 =−yi2yi1∆αi1 = −yi2d (24b)

whered =
(Ei2

−Ei1
)

η12
and ∆α′

p = {∆αi1 , ∆αi2 , ∆b}. Note that due to (23) we haved ≤ 0

always since by definition of positive definiteness of the kernel we haveη12 > 0. We consider

the following cases:

1A proof for the general working set case can be found in [2].
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1) Caseαi1 = 0 andvi1 < 0:

From (8) this is a violater andyi1 = −1 sinceyi1vi1 = Ei1 ∈ E+. Provided the step

is nonzero, from (24a) we have∆αi1 > 0 which implies∆αi1vi1 < 0. Furthermore,

by definition∆αi1 ≥ 0 means thatαt+1
p > αt

p or αt
p moves to the upper bound when

updated.

2) Caseαi1 = C andvi1 > 0

The point is also a violater withyi1 = 1 since by assumption (23) we haveyi1vi1 =

Ei1 ∈ E+. Using (24a) as before we get∆αi1 < 0 and deduce∆αi1vi1 < 0.

3) Case0 < αi1 < C andvi1 6= 0:

This gives rise to similar situations as in Case 1 and Case 2 and the same result follows.

The proof forαi2 follows in similar fashion using (24b) and is omitted here.

Corollary 4.1: Assume a positive definite kernel, then for every violater,αi where i ∈
I(E+ ∪ E−) updated using (7), the following holds

∆αivi < 0 (25)

Proof: The proof follows easily by reexamining Cases 1-3 in Lemma 4.2 and noting

that for all types of violaters, the product (25) is always negative.

The corollary is not surprising as it turns out to be a special case of Wolfe’s theorem (see

e.g. [19]) which we will invoke later on. In other words, working sets composed of violaters

provide a strict decrease in the objective function. The next result requires the following

Lemma 4.3:Let the variables of a working set be denoted byα′
p = {α1, α2, b} and assume

a positive definite kernel matrix with initial conditionα = 0. Then provided the step∆α′
p 6= 0

we have

v′p
T H−1

p v′p ≥ 0 (26)

with equality if and only if‖v′p‖ = 0.

Proof: The proof is through direct calculation. First note by (7) that

H−1
p v′p= − 1

β
∆α′

p

Now using the initial conditions, we have from Lemma 4.1 thatvb = 0. Using (10a)-(10c)
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we can thus simplify the following

v′p
T H−1

p v′p

= − 1

β
v′p

T
∆α′

p

= −y1v1(y2v2 − y1v1)

η12

− y2v2(y1v1 − y2v2)

η12

(27)

=
E2

1 + E2
2 − 2E1E2

η12

=
(E2 − E1)

2

η12

≥ 0

Note that (27) can be zero only ifv1 = v2 = 0 or ‖v′p‖ = 0. The casey1v1 = y2v2 does not

occur because∆α′
p 6= 0.

The following describes several properties of the potential of overstep and its relationship

to the original step magnitude,β.

Lemma 4.4:Assume thatlim
t→∞

M(α′) = 0 and apply the Newton method (7) to solve (2),

then∀α′
p ⊆ A and iteration steps,t > 0 we have

a) M(α′
p) < 0 if and only if 0 < β < 2.

b) If in addition to lim
t→∞

M(α′) = 0, for all t > 0 v′p 6= 0 then lim
t→∞

β = 0 or lim
t→∞

β = 2.

c) The condition lim
t→∞

M(α′) = 0 further implies lim
t→∞

‖τ ′p‖
‖H−1

p ‖‖v′p‖ ≤ 1 and the behaviour is

p-norm independent.

Proof: First note that the assumptionlim
t→∞

M(α′) = 0 implies that in the limit, we

have also for allα′
p ⊆ A the behaviourlim

t→∞
M(α′

p) = 0. Now set∆α′
p = −βH−1

p v′p and

substituting into (14) we obtain

M(α′
p) =

(
β2

2
− β

)
v′p

T H−1
p v′p (28)

For the Newton step to be a direction of descent, we must have

M(α′
p) =

(
β2

2
− β

)
v′p

T H−1
p v′p < 0

From Lemma 4.3, we havev′p
T H−1

p v′p > 0 and so we require
(

β2

2
− β

)
< 0. The result of

a) then follows after rearranging the inequality. The ”only if” can be verified by taking any

β > 2 or β < 0 to show thatM(α′
p) > 0. Taking limits with respect to t, we have

lim
t→∞

M(α′
p)= lim

t→∞

(
β2

2
− β

)
v′p

T H−1
p v′p

Now if we have lim
t→∞

M(α′
p) = 0 andv′p 6= 0 then we must have

lim
t→∞

(
β2

2
− β

)
= 0 (29)
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which occurs if eitherlim
t→∞

β = 0 or lim
t→∞

β = 2. Taking norms of (21), we obtain

‖τ ′p‖≤ |β − 1|‖H−1
p ‖‖v′p‖

→ |β − 1|≥ ‖τ ′p‖
‖H−1

p ‖‖v′p‖
(30)

Note this is holds for anyp-norm and so the result will be p-norm independent. From b) we

deduce the following

lim
t→∞

|β − 1| = | lim
t→∞

β − 1| = 1

Using this and taking limits of (30)

lim
t→∞

|β − 1| ≥ lim
t→∞

‖τ ′p‖
‖H−1

p ‖‖v′p‖
(31)

and the result of c) follows.

The result in c) has several implications. Ast → ∞ or as we approach asymptotic con-

vergence, multipliers at both upper and lower bounds will have non-zero potential of over-

stepping. The magnitude of overstepping increases indicating that they ”push” harder against

the constraint boundaries. Multipliers in between the bounds will have some potential of

overstep. Those in between bounds with zero gradients will not have a potential of overstep

i.e. ‖τ ′p‖ = 0.

Remark4.1: A previous view was that a larger step size could be obtained if we minimized

the potential of overstep [20]. A more appropriate requirement is to say that we want to find

the largest step in the constrained region. Minimization of the potential of overstep not only

ensures the step remains in the constrained region but implicitly looks for the largest step

size.

B. The gradient elements and the condition of the subHessian

First, since we modify two multipliers and the thresholdb, we can approximate the

maximum gradient norm by

‖vp‖max ≈ |Ei − Ej|max

where∀i, j we selectEi ∈ E+, Ej ∈ E− and vb = 0 from initial conditions. This selection

method can be relaxed in the event thatE+ = Ø or E− = Ø and further facilitated if the sets

E+ andE− are ordered as

E+ = {Ei > 0|E1 ≥ E2 ≥ E3 ≥ . . .} (32a)

E− = {Ei < 0|E1 ≤ E2 ≤ E3 ≤ . . .} (32b)
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and one can pick in subsequent order the elements which would give maximum gradient

norm. If either one of the sets is empty, one can still pick the first and last elements of the

nonempty set to give a maximum gradient norm. This in fact is not new and has been the

guiding heuristic in previous algorithms where the maximal violating pair has been chosen

e.g. SMO,SVMlight and LibSVM.

The matrixHp which corresponds to the working setα′
p is the Hessian of the subproblem

(5). The condition number of this subHessian is defined as

κHp = ‖Hp‖‖H−1
p ‖

and is a rough indication of the closeness to singularity of the matrix [13]. The smaller

the condition number, the better conditioned the matrix is. Further more, the subHessianHp

defines the curvature of the subproblem (5) and a stronger subHessian e.g. diagonal dominant,

means comparatively steeper directions of descent. Calculating the condition number or

determining the diagonal dominance of the subHessian might be too computational intensive

considering the combinations required.

We note that the quantityη12 defined in (11) is the determinant ofHp and explicitly appears

in (18). Minimizing η12 can also be seen as approximately obtaining a larger change in the

objective function which invariably means a steeper descent direction. It is an approximation

mainly because a small determinant does not necessarily mean a more diagonally dominant

matrix. However, for our heuristic purposes we could use this as a guide to select a subproblem

with a relatively better conditioned subHessian.

C. Sensitivity Analysis of the Objective Function

In this part, we investigate the sensitivity of the discussed quantities in an attempt to

pinpoint those which would contribute more towards the improvement of the objective. By

substitution of (20) in (14) the change in the objective (2) can be written as

M(α′
p)=

1

2

[
τ ′T

p Hpτ
′
p − v

′T
p H−1

p v′p
]

(33)

where the Hermitian matrixHp is the Hessian of the sub-problem,v′p is the augmented

gradient vector andτ ′
p is the vector of potential overstep. The following technical lemma

will be used for the next result.

Lemma 4.5:Let H ∈ <n×n be nonsingular and‖ • ‖ be any matrix norm. ThenH + ∆H

is nonsingular provided

‖∆H‖ <
1

‖H−1‖ (34)
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and the inverse expansion exists and is

(H + ∆H)−1 =H−1 − (H−1∆H)H−1

+(H−1∆H)2H−1 − . . . (35)

Proof: see for example Adi-Ben [21]

The matrix∆H can then be viewed as a perturbation ofH. We propose the following

Lemma 4.6:Let H ∈ <n×n be positive definite and let‖ • ‖ denote the Frobenius matrix

norm. For any positive definite∆H ∈ <n×n such that

‖∆H‖ <
1

2‖H−1‖ (36)

andx ∈ <n we have

xT (H−1 −∆H−1)x≤ xT (H −∆H)−1x

≤ xT (H−1 + ∆H−1)x (37)

Proof: First note that (36) fulfils the condition in Lemma 4.5 and soH − ∆H is

nonsingular with the following inverse expansion

(H −∆H)−1

= H−1+ (H−1∆H)H−1+ (H−1∆H)2H−1+ . . .

= H−1+ (H−1∆H)H−1 + P ((H−1∆H)2)H−1 (38)

Here the polynomial matrix equationP (Z) is denoted as

P (Z)= Z + Z2 + Z3 + . . .

Then multiplying both sides of (38) byx ∈ <n, we obtain

xT (H −∆H)−1x

= xT H−1x + xT H−1∆HH−1x + xT P ((H−1∆H)2)H−1x

≥ xT H−1x + xT H−1∆HH−1x

≥ xT H−1x− xT ∆H−1x

by virtue of H−1∆HH−1 being positive definite. This proves the lower bound. For the upper

bound, assume first that the matrix

(H −∆H)−1 − (H−1 + ∆H−1) > 0 (39)
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i.e. positive definite, then using (38) we have

[
(H −∆H)−1 − (H−1 + ∆H−1)

]
∆H

= (H−1 + P (H−1∆H)H−1 − (H−1 + ∆H−1))∆H

= (P (H−1∆H)H−1 −∆H−1)∆H

= P ((H−1∆H)2)− I > 0

Rearranging and taking norms, we get

‖I‖< ‖P ((H−1∆H)2)‖

< ‖H−1∆H‖2 + ‖H−1∆H‖3 + . . .

=
‖H−1∆H‖2

1− ‖H−1∆H‖ (40)

the last line being the sum of an infinite geometric series in‖H−1∆H‖ < 1. Rearranging

(40) and simplifying we get the quadratic form

‖H−1∆H‖2 +
√

n‖H−1∆H‖ − √n > 0 (41)

Factorizing and examining the two cases, we find forn ≥ 1 that (42) holds only for the case

‖H−1∆H‖> −n
1
2 +

√
n + 4n

1
2

2

>
−n

1
2 −

√
n + 4n

1
2

2
>

1

2

or

‖∆H‖> 1

2‖H−1‖
This contradicts condition (36) and so we must have

(H −∆H)−1 − (H−1 + ∆H−1) ≤ 0 (42)

instead of our initial assumption (39). Now take any vectorx ∈ <n and multiply (42) to give

xT
[
(H −∆H)−1 − (H−1 + ∆H−1)

]
x ≤ 0

⇒ xT (H −∆H)−1x ≤ xT (H−1 + ∆H−1)x

and the upper bound is proved. This completes the proof.

The following proposes an upper bound to the maximum possible change in the objective

function.

MECSE-26-2005: "A Basic Heuristic Decomposition Framework for ...", D. Lai, N. Mani and M. Palaniswami



17

Lemma 4.7 (Sensitivity of Change in the Objective):Suppose forα′
p ∈ A the change in

objective function is

M(α′
p)=

1

2

[
τ ′T

p Hpτ
′
p − v

′T
p H−1

p v′p
]

Let ∆M > 0 so that the sensitivity for a negative change in the objective function is

M(α′
p)−∆M=

1

2

[
(τ ′

p −∆τ ′
p)

T(Hp −∆Hp)(τ
′
p −∆τ ′

p)

−(v′p −∆v′p)
T(Hp −∆Hp)

−1(v′p −∆v′p)
]

(43)

whereHp, ∆Hp ∈ <m×m, ∆v′p, ∆τ ′
p ∈ <m and

τ ′
p −∆τ ′

p = (β − 1)(Hp −∆Hp)
−1(v′p −∆v′p) (44)

Assume further that the perturbation matrix∆Hp is positive definite and

‖∆Hp‖ <
1

2‖H−1
p ‖

Then

inf −∆M≥ −1

2
‖H−1

p ‖‖v′p −∆v′p‖2

[
‖∆Hp‖‖∆τ ′

p‖2ρB

‖∆H−1
p ‖‖v′p −∆v′p‖2

+ ρ2
A + ρB

]
(45)

where

ρA =
‖∆v′p‖2

‖v′p −∆v′p‖2
ρB =

‖∆H−1
p ‖

‖H−1
p ‖

Proof: The condition on‖∆Hp‖ allows us to apply (37) of Lemma 4.6 to (43). We

obtain

M(α′
p)−∆M

=
1

2

[
(τ ′

p −∆τ ′
p)

T(Hp −∆Hp)(τ
′
p −∆τ ′

p)

−(v′p −∆v′p)
T(Hp −∆Hp)

−1(v′p −∆v′p)
]

≥1

2

[
(τ ′

p −∆τ ′
p)

T(Hp −∆Hp)(τ
′
p −∆τ ′

p)

−(v′p −∆v′p)
TH−1

p (v′p −∆v′p)
]

−1

2
(v′p −∆v′p)

T ∆H−1
p (v′p −∆v′p)

≥M(α′
p) + v′p

T H−1
p ∆v′p − τ ′

p
T
(Hp −∆Hp)∆τ ′

p

−1

2

[
τ ′

p
T
∆Hpτ

′
p + ∆v′p

T H−1
p ∆v′p

+(v′p −∆v′p)
T ∆H−1

p (v′p −∆v′p)
]

(46)
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We now want to show that

v′p
T H−1

p ∆v′p − τ ′
p
T
(Hp −∆Hp)∆τ ′

p > 0 (47)

Using the definitions in (21) and (44), we get after some algebra

v′p
T H−1

p ∆v′p − τ ′
p
T
(Hp −∆Hp)∆τ ′

p

= (2β − β2)v′p
T H−1

p ∆v′p + (β − 1)2v′p
T H−1

p ∆HpH−1
p v′p

Now note that we must have

v′p
T H−1

p (v′p −∆v′p) < 0 (48)

to maintain a step towards the minimum of the problem. Using this fact, Lemma 4.4(b) and

Lemma 4.3 we then deduce that(2β − β2)v′p
T H−1

p ∆v′p > 0. Then since∆Hp is positive

definite, we have shown that (47) holds. This allows us to reduce (46) further to

−∆M≥ −1

2

[
τ ′

p
T
∆Hpτ

′
p + ∆v′p

T H−1
p ∆v′p

+(v′p −∆v′p)
T ∆H−1

p (v′p −∆v′p)
]

(49)

Since all terms in the brackets are positive, we can now deduce that

∆M ≤1

2

[
τ ′

p
T
∆Hpτ

′
p + ∆v′p

T H−1
p ∆v′p

+(v′p −∆v′p)
T ∆H−1

p (v′p −∆v′p)
]

≤1

2
‖H−1

p ‖‖v′p −∆v′p‖2

[
‖∆Hp‖
‖H−1

p ‖
‖∆τ ′

p‖2

‖v′p −∆v′p‖2

+
‖∆v′p‖2

‖v′p −∆v′p‖2
+
‖∆Hp‖
‖H−1

p ‖

]

=
1

2
‖H−1

p ‖‖v′p −∆v′p‖2

[
‖∆Hp‖
‖H−1

p ‖
‖∆τ ′

p‖2

‖v′p −∆v′p‖2

+
‖∆v′p‖2

‖v′p −∆v′p‖2
+
‖∆H−1

p ‖
‖H−1

p ‖

]

=
1

2
‖H−1

p ‖‖v′p −∆v′p‖2

[
‖∆Hp‖‖∆τ ′

p‖2ρB

‖∆H−1
p ‖‖v′p −∆v′p‖2

+ ρ2
A + ρB

]

Taking the negative, we obtain the infimum for the minimization of the objective function

and the lemma is proved.

Remark4.2: Equation (45) relates the sensitivities of the previously mentioned components

of the step that affect the rate of convergence namely the sub-gradients, the potential of
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overstep and the inverse subHessian. Specifically, the sub-gradient norm gives a quadratic

contribution towards the maximum possible change in the objective function. The potential of

overstep is related to the sub-gradient through (19) and varies in similar fashion. This explains

roughly why current decomposition algorithms e.g. LibSVM,SVMlight which strictly select

working sets based on large sub-gradient norms are an improvement over the original SMO

algorithm.

D. Convergence Properties

It may be of some concern that the newer working set selection methods may result in

non-convergence of the decomposition algorithms. We show here that as long as the heuristic

rule selects working set elements which satisfy a condition, it is sufficient to guarantee

asymptotic convergence. Hush and Scovel [22] show that a necessary and sufficient condition

for strict decrease in the objective function for SMO type decomposition algorithms is that the

working set must consist of violaters and non-bound Support Vectors. We give a generalized

convergence theorem for heuristic rules selecting our working sets size and the use of an

arbitrary update rule i.e. not necessarily Newton. The condition is sufficient but not necessary.

Lemma 4.8 (Sufficient Conditions):Let the kernel matrixK , of (2) be positive definite and

denoteα′∗ as the optimal point of the problem. Then

lim
t→∞

‖α′t −α′∗‖ = 0 (50)

if

a) For all t > 0 and for allα′
p ∈ A we can findα′

p which gives∆α′
p such that

∆α′
p

T vp < 0 (51)

b) For all t > 0 andα′
p ∈ A we select

α′
p= {αi, b|i ∈ I(E+) ∪ I(E−) ∪ I(αF )} (52)

whereαF = {αi|0 < αi < C}.
Proof: We will first show that strict decrease in the objective function implies (50)

and strict decrease is in turn guaranteed by (51). Then, we will show that the condition (51)

requires that we select working sets satisfying (52).

First note that the optimal value of the problem=(α′∗) is not at−∞ due to a finite

constraint set i.e.D is closed,convex and the data set is finite in size. SinceK is assumed
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positive definite, then any subHessianHp is at the least positive semidefinite. Since=(α) is

smooth and continuous , it is F-differentiable and the gradientv′, of =(α) satisfies

=(α′t)−=(α′∗) =v′T (α′t −α′∗)

≤C1‖α′t −α′∗‖ (53)

for someC1 > 0. Now strict decrease in the objective function gives

=(α′t+1
)−=(α′t) < 0

⇒ =(α′t+1
)−=(α′∗) < =(α′t)−=(α′∗)

and at optimality=(α′t) = =(α′∗). This in turn implies that ast →∞ we have

lim
t→∞

=(α′t)−=(α′∗) ≤ lim
t→∞

C1‖α′t −α′∗‖ → 0

SinceC1 > 0 then we must havelim
t→∞

‖α′t −α′∗‖ = 0. Now for strict decrease we require

=(α′t+1
)−=(α′t) < 0

Using (33), this gives for some working setα′
p

=(α′t+1
)−=(α′t)

=
1

2
∆α′T H∆α′ + ∆α′T v′

=
1

2
∆α′

p
T Hp∆α′

p + ∆α′
p

T v′p < 0

→ ∆α′
p

T v′p < −1

2
∆α′

p
T Hp∆α′

p

By Lemma 4.3 we then deduce

sup−1

2
∆α′

p
T Hp∆α′

p = sup−1

2
v′p

T H−1
p v′p = 0

and thus conclude

∆α′
p

T v′p < 0 (54)

is sufficient to guarantee strict decrease in the objective function. This proves (a). To prove (b),

note that by Corollary 4.1, we have (51) if the working set elements have indices corresponding

to the indices setI(E+) ∪ I(E−). Consider then the setαF = {αi|0 < αi < C}. If vi = 0,

the element-wise product∆αivi = 0 and does not affect∆α′
p

T v′p. It is possible also to find

points with vi < 0 giving ∆αi > 0 or vi > 0 giving ∆αi < 0 which result in∆αivi < 0.

Hence, selectingα′
p with indices corresponding toI(E+)∪I(E−)∪I(αF ) ensures (51) holds

and is sufficient to guarantee asymptotic convergence. This completes the proof.
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The conditions in the lemma above are sufficient but not necessary firstly because it is not

required to hold for every iteration. Asymptotic convergence can still be achieved if we relax

the condition and require it instead to hold for a majority of the iteration. A stronger result

can be derived which contains necessary and sufficient conditions for finite termination (as

defined e.g. Keerthi et. al [11]), but this will be omitted here since we only require conditions

to ensure our algorithm converges. We will make a few remarks. It can be seen that the Newton

step satisfies condition Lemma 4.8 (a) provided the step size satisfies Lemma 4.4(a) and we

only need to be mindful of condition (b) when designing a heuristic rule. In the event that the

kernel matrix is positive semidefinite or indefinite, the Newton step is no longer a guaranteed

direction of descent. We can select another working set with a subHessian matrix that is better

conditioned i.e. the component corresponding to the kernel matrix is better conditioned. If all

possible working sets are exhausted, one may apply a linear direction of descent so that (51)

still holds. This last resort may be required in practice due to computational roundoff errors

or degenerate data.

V. A H EURISTIC FRAMEWORK FOR THEDECOMPOSITIONMETHOD

In order to solve (18), one can use an algorithm which searches through the entire space

of points to find the working set giving the minimum value of (18). We call this the Naive

Search Algorithm which tries to satisfy (18) at each iteration. This algorithm if applied to

the entire space of possible working sets provides the optimal working set at each iteration.

A. The Naive Search Algorithm

In order to ensure asymptotic convergence as per Lemma 4.8, the search spaceA is restricted

to theσ-algebra of the set

U= {αi|I(αi) ∈ I(E+) ∪ I(E−) ∪ I(αF )}

which for practical purposes is ordered as follows

U= {α1, α2, . . . , αk|E1 ≥ E2 ≥ . . . ≥ Ek} (55)

The ordered setU contains all violaters and non-bound Support Vectors with elements

arranged such that the most positive error is at the top and the most negative error is at

the bottom. This is practical to implement if we have kept an ordered set of errors, namely

E+ andE− (see (32a) and (32b) ). A subscript to indicate the iteration is not required since

we refer toU on a per iteration basis.
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ALGORITHM 1 (The Naive Search Algorithm (N1)):

Initialize α′ = 0. At each iterationt determine the setU and letk be the number of elements

in U. Set i, j = 0.

1. i = i + 1 and selectα1 = αi ∈ U.

2. j = j + 1 and selectα2 = αk−1−j ∈ U

3. Compute∆α1, ∆α2.

4. Setβ1 = 1. If α1 + ∆α1 < 0 thenβ1 = −α1

∆α1
else if α1 + ∆α1 > C thenβ1 = C−α1

∆α1
.

5. Setβ2 = 1. If α2 + ∆α2 < 0 thenβ2 = −α2

∆α2
else if α2 + ∆α2 > C thenβ2 = C−α2

∆α2
.

6. β = min{β1, β2}
7. Compute the value of (18). If current value is smaller than previous value, store the

indices{i, j}.
8. Goto Step 2 untilj = k. If j = k set j = 0 and goto Step 1 untili = k.

9. Update onlyαi, αj i.e. which minimizes (18). Updateb by computing∆b usingαi, αj.

UpdateU. If U = ∅ END elsei, j = 0 and goto Step 1.

The Naive Algorithm searches all possible combinations of working set and updates the one

which minimizes (18). The algorithm is clearly going to be slow as the data set size increases

due to the increasing combinatorial problem size. This problem would still persist even if a

L1 kernel cache is implemented as in most current algorithms e.g. LibSVM,SVMlight etc. It

becomes worse if a LRU (least recently used) scheme is implemented on a small kernel cache

because the rows will be consistently replaced (cache thrashing) when searching through the

combinations and computing (18).

B. An Adaptive Search Window

One way to reduce the size of the combinatorial problem and alsocache thrashingis to

reduce the dimensionality of the combinatorial problem. A natural reduction has been provided

by using (52) of Lemma 4.8 as the search space. A further reduction in dimensionality can

be done via a search window method. We first defineΩ as a smaller subset ofU from which

the working set elements are chosen. From the sensitivity analysis in Lemma 4.7, our first

priority would be to select a working set with a large subgradient norm. This can be done

by selectingγ elements off the top andγ elements off the bottom ofU. The subsetΩ now

becomes asearch windowwith size 2γ. We need to also allow for degenerate cases, where

sometimes all combinations inΩ and heuristics fail to produce an acceptable decrease in
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the objective function. If this occurs, the next2γ elements are chosen intoΩ i.e. the search

window is expanded.

The size ofΩ can be made adaptive by using different values ofγ for different stages of the

iterations. In the early stages of the iteration, a smallγ is sufficient as only an approximately

optimal working set is required. As the iteration converges, we would increaseγ in order to

obtain a more optimal working set. In addition, increasingγ in this manner takes advantage

of the operation of the kernel cache. It is well known that in the later stages of the iteration, a

subset of points consisting mostly of non-bound Support Vectors are still non-optimal. These

points are likely to have their kernel values cached since they have been frequently updated.

Therefore a larger search windowΩ at this stage would also reduce the compromise on

computation time since the required values are in the cache. For experimental purposes we

propose first a simple two step adaptation defined as below

Heuristic 5.1 (A Simple Adaptive Window):

if (NE > TG)

γ = LG else γ = UG

where we use the following settings

NE = Number of Violaters

TG = 0.1n

LG = 5, UG = 20 (56)

The size ofΩ now becomes time dependant and this may affect the rate of convergence

dramatically in some cases. Better adaptive window techniques are possible and left as further

research issues.

C. Shrinking

The shrinking heuristic first introduced by Joachim’s [5] and then used in LibSVM excludes

updating the gradients or computing the violation of multipliers at the bounds under the

assumption that they stay fixed through out the iteration. Optimality of the excluded variables

are checked at the end and reoptimization is done if any of them were found to become

non-optimal. It is a heuristic meant to improve the run-time speed of the algorithm especially

for large data sets. In our framework, we have opted to leave the shrinking heuristic out
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for comparison and novelty purposes. This gives us an opportunity to investigate how our

proposed heuristics compare against this popular heuristic.

D. Heuristic Framework

In the early stages of the iteration, we believe that it may not be necessary to obtain the

working set which optimizes (18) strictly. Instead we can select an approximately optimal

working set to compromise between searching for the optimal working set and implemen-

tation speed. The introduction of the adaptive search window provides the first step to this

approximation. We now investigate several possible heuristics for a second approximation to

this.

One way to approximately minimize (18) is to maximize the step magnitudeβ or to

minimize the potential of overstep. This would require that we efficiently predict the direction

of motion for each variable. Lemma 4.2 provides us with a rough rule to select a working

set that would most likely give us minimum potential of overstep. The following heuristic

depicts this.

Heuristic 5.2 (Min Potential of Overstep):

Selectα1 ∈ U from the top and look forα2 ∈ U starting from the bottom such that:

a) if α1 = {0, C} andE1 > 0, selectα2 = {0, C} with E2 < 0.

b) if α1 = {0, C} andE1 > 0, select0 < α2 < C with E2 < 0.

In Heuristic 5.2, the second working set element is selected based on the nature of the

first. The heuristic is two-tiered with the first emphasis on updating bounded violaters and

the second emphasis on pairing a bounded violater with any other violater. The aim is obtain

a pair which has a larger change when updated. We note that a similar heuristic alone has

been used in our previous work [20] with some success. Note that the difference in this

heuristic compared to [20] is that it is not used for pairs of non-bound Support Vectors. The

next heuristic deals with this case and reduces the need to exhaustively compute (18). It

approximately selects a better conditioned subHessian.

Heuristic 5.3 (Min η12):

Assume that in all casesη12 > 0 and at some stept, we getΩ ∈ I(αF ). This automatically

excludes the use of Heuristic 5.2.

a) Selectα1 ∈ U from the top and look forα2 ∈ U starting from the bottom. Compute

η12 and findα1, α2 which minimizesη12.

b) If using a Gaussian kernel, this can be achieved by maximizingK12.
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For the Gaussian kernel,K11 = K22 = 1 for all α1, α2 so minimizingη12 can be simplified

as per Heuristic 5.3 (b).

In some stages of the iteration, the step size may be increased or boosted by selecting

β > 1 e.g. [23]. We refer to this asacceleration. The range ofβ for guaranteed asymptotic

convergence in this case has been given by Lemma 4.4 (a). This technique is sometimes

known as the Newton relaxation method [24] for the case whenβ < 1 and the objective

function is a higher order polynomial with several maxima and minima. If we useβ < 1,

this reduces the step size and is referred to asdamping. The optimal use of acceleration and

damping in the decomposition setting still remains a research area for us. For now, empirical

evidence indicates that acceleration can be applied in the early stages of the iteration for large

values of C in order to quickly move bounded variables to opposite bounds. It can also be

applied in the stages of the iteration where the step size is relatively too small. We propose

the following general heuristic for bothα1 andα2.

Heuristic 5.4 (Acceleration):

After applying Heuristic 5.1-5.4, compute∆α1 and∆α2 without determiningβ. Then

if (αi ∈ {0, C})

if (|∆αi| < 0.1C and |∆αi| > 0.01C)

β∗ = 1.5 else β∗ = 1.3

Set ∆∗αi = β∗∆αi. Check feasibility of updated iterates and if feasibility violated, scale

∆∗αi accordingly.

In the final stages of the iteration, we apply the Naive Algorithm to obtain a more op-

timal working set. The difference here is that the Naive Algorithm will only be applied to

combinations formed from elements in the search windowΩ. Run-time speed should not

be compromised too much due to the necessary kernel values being in the kernel cache.

Furthermore, computation of (18) can be done with kernel values computed on the fly as to

reduce the potential for cache thrashing. The motivation for refining our search in the final

stages is to reduce the oscillations between variables that are still difficult to determine. We

use the following condition to determine the switch to the Naive Algorithm.

Heuristic 5.5 (Refining the Search via N1):
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if (size(U) < 0.1n or (max Ei −min Ej) < 1.0)

Apply N1 to Ω

E. Termination Criteria

The conditionmax Ei −min Ej described in Heuristic 5.5 is also known as theviolation

gap [25]. It has been used for finite termination of the LibSVM algorithm where the algorithm

terminates if the gap size is zero.SVMlight instead checks that all examples satisfy the KKT

conditions within a practical tolerance. One can now see that Heuristic 5.5 operates as the

algorithm approaches optimality. Another method is to compare the difference between the

primal SVM problem and the dual SVM problem [14], [26]. We have used the first two

methods in this framework since it saves us monitoring the primal and dual values and

further allows a fair comparison between current algorithms.

F. Block Diagram of the basic Heuristic Framework

We now connect all the previously described heuristics into a single framework. The

flowchart depicting how Heuristic 5.1-5.4 are utilitized in the heuristic framework are given

in Fig 3. The initialization involves reading the dataset, allocating memory and initializing

all necessary variables. The framework is then used for selecting the working set to update

at each iteration. The first step is to check for non-optimal points which violate the KKT

conditions (8) within a certain practical toleranceε. Then the setU is determined.

In the ”AdaptiveΩ” block, γ is adjusted using Heuristic 5.1 and the corresponding elements

selected into the search windowΩ. The ”ScanΩ” block starts by scanning the possible

combinations ofα1 and α2 starting with α1 corresponding to the most positiveE1 in Ω

and E2 the most negative. Heuristic 5.2 is applied if while scanning a pair of violaters at

bounds (BSV) i.e.αi = {0, C} are found then Heuristic 5.4 is applied. If all violaters in

Ω are non-bounded Support Vectors (NBSV) then Heuristic 5.3 is applied. After the pair

is selected, the ”Update Step” is done. The ”Update Step” calculates the new values of the

working set, updates all the training errors and also the pseudo Lagrangian,b. Heuristic 5.5

is applied during the final stages of the iteration and not shown explicitly in the flow chart.

The algorithm then terminates when the termination criteria are met.
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Fig. 3. A flowchart detailing the operation of proposed the heuristic framework

VI. EXPERIMENTAL METHOD AND DISCUSSION

We implement our SVM program called D2C-SVM (Data to Classification) in Visual C++

6.0 and all experiments were carried out on a Pentium IV, 1.5 GHz computer with 256MB

RAM. We compare our implementation against the currently popular optimization software,

namely LibSVM (v.2.78) [27] andSVMlight (v.6.1)2. TheSVMlight algorithm uses a working

set selection rule which searches for maximal violating pairs and applies an update rule

based on steepest search. LibSVM (v.2.78) combines the SMO update rule with aSVMlight

working set selection rule. These two algorithms use the same fixed selection rule throughout

the optimization process. Our D2C program implements the heuristic framework in Fig 3

to select working sets. The standard tolerance ofε = 0.001 was used for the terminating

condition and kernel cache size was set to 120MB for all algorithms.

We record the number of iterations which indicate the length of the sequence of sub-

problems successfully solved. The CPU run-times denote the practicality of the algorithm

implementations. We now define the following basic ratios which we will use as bench-

mark indicators to measure the performance of the D2C heuristic framework against current

2http://svmlight.joachims.org/
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algorithms. The following definitions will be used

Ti= CPU run time in seconds for Algorithm i

Ii= Number of iterations for Algorithm i

NBSV = Total Free Support Vectors i.e.0 < αj < C

BSV = Total Support Vectors at bounds i.e.αj = C

Let CI12 be theiteration ratio for Algorithm 1 against Algorithm 2 is defined as

CI12=
I1

I1 + I2

(57)

The run-time ratioCT 12 for Algorithm 1 against Algorithm 2 is defined as

CT 12=
T1

T1 + T2

(58)

The performance indexµ12 for Algorithm 1 against Algorithm 2 is defined as

µ12=
I1(T1 + T2) + T1(I1 + I2)

2(T1 + t2)(I1 + I2)

=
CI12 + CT 12

2
(59)

If µ12 = 0.5 then we say that both Algorithm 1 and Algorithm 2 have almost similar

performance. Ifµ12 < 0.5 we say that Algorithm 1 performs better than Algorithm 2. A

value of µ12 > 0.5 indicates that Algorithm 2 outperforms Algorithm 1. The performance

index µ12 can also be interpreted as how well a particular algorithm compares to another

in striking a balance between improving the convergence rate (theoretical) and the run-time

speed (practical). We also introduce a measure of difficulty of the problem defined as

υ=
NBSV

NBSV + BSV
(60)

This is done in the view that the decomposition method has trouble determining the free

variables i.e. NBSV [10]. A value closer to unity indicates a problem that is more difficult. In

all cases, Algorithm 1 is taken as our D2C heuristic framework and comparisons made against

the other state of the art decomposition algorithms. We present some initial performance results

over some popular benchmark data sets.

A. Performance over UCI benchmark data

We first test our algorithm on the UCI benchmark data sets which have been widely used

to benchmark decomposition algorithms e.g. SMO [4]. The benchmark dataset we use is the
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UCI 1 to 9 adult dataset [28] with sizes approximately ranging from 1000-40000 points.

For illustration purposes, we compare the D2C algorithm against the full Naive Algorithm

(N1) on the first three Adult datasets (see Table II). Then four sets of benchmarks were done

comparing our algorithm againstSVMlight and LibSVM. The performance results are reported

in Table III-VI.

B. Run Time performance over kernel and C parameters

In this experiment, we employ the large UCI adult 9 dataset and use the Gaussian kernel.

For the Gaussian kernel, we vary the kernel widthσ2 over a range1 ≥ σ2 ≥ 100 across a

range of SVM parameters of C where0.1 ≤ C ≤ 100. The results are plotted on a log-scale

graph in Fig 4-Fig 5 for comparison against LibSVM andSVMlight.

C. Performance over poorly conditioned data

The purpose of this experiment is to show that choosing a working set with a well

conditioned subHessian results in improved theoretical convergence rates. We employ the

UCI Web data set for this experiment which consists of 8 datasets in increasing size. These

datasets contain examples with no attributes as well as missing attributes resulting in an overall

poorly condition Hessian matrix. The performance results are reported in Table VII-X.

D. Discussion of Results

From Table II, it is clear that the Naive Search Algorithm chooses the optimal working set

for (18) as depicted by the lower number of iterations. However, as expected the computational

run-time increases tenfold, until it becomes impractical to search for the optimal working

set at each iteration. In the benchmarks on the UCI Adult datasets, the heuristics in our

algorithm achieve on average a 30% reduction in the number of iterations compared to

LibSVM and SVMlight (see Table III-VI). The proposed Heuristics 5.2-5.5 provided a better

approximation to the optimal working set rule instead of only searching for maximal violating

pairs. For the poorly conditioned data sets, our D2C algorithm converges in approximately one

third of the number of iterations than LibSVM andSVMlight. This indicates that improving

the approximation to the optimal value of (18) at each iteration increases the theoretical

convergence rate (see Table VII-X).

For the run-time performance, we observed that our heuristic framework was on average

faster than the shrinking heuristic used by LIBSVM andSVMlight for the benchmarks on the
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UCI adult data set (Table III-VI). The results in Fig 4-Fig 5 seem to confirm this further

when we test the largest dataset over a range of Gaussian kernel and C parameters sometimes

achieving an improvement over an order of magnitude. This is surprising considering the fact

that the shrinking heuristic causes both LIBSVM andSVMlight to update a smaller set of

gradients as convergence is reached. The overall effect should be a shorter training time for

larger datasets. We note that the two benchmarks on the UCI Adult set test both extremes of

the problem difficultyν12, so the number of free variables is not a contributing factor to this

observation as noted by [10]. In contrast however, the shrinking heuristic resulted in faster

run time for LIBSVM andSVMlight over the UCI web data set benchmarks (Table VII-X).

Even though, the D2C algorithm selected a more optimal working set, its slower run-time

performance resulted in a poorer performance index,µ12 against the other algorithms. Again,

it can be seen that the problem difficultyν12 did not seem to be a contributing factor.

On further investigation, we found that the shrinking heuristic was useful for problems

where only a small subset of multipliers were updated during the entire iteration. In the UCI

Adult benchmarks, we noted that on average 70% of the variables i.e. Lagrangian multipliers,

were updated and the kernel cache was fully utilized. This is in stark contrast to the UCI

Web benchmarks where on average only 25% of the points were updated (the other 75%

do not violate the constraints during optimization). Since variables that are ”shrunk” need

their gradients to be recomputed and changes to be stored, a larger percentage of changing

points and inaccurate shrinking would naturally require more computational time and slow

the algorithm down. We deduce then that in these situations, the shrinking heuristic could be

replaced with Heuristic 5.2-5.5 to obtain a better run-time performance. In retrospect, if only

a small fraction of points are updated during the optimization then Heuristic 5.2-5.5 should

be coupled with the shrinking heuristic to improve overall algorithm performance.

Heuristic 5.2 and 5.3 try to obtain the working set which approximately solves (18) within

the search window controlled by Heuristic 5.1. The acceleration applied in Heuristic 5.4

boosts small step sizes but we observed that in Table VI and Table X where there is a

significant range in problem difficultyν12, acceleration worked better for smaller values of

ν12. This observation can be explained as follows. A more difficult problem has a large

number of working sets composed of free Support Vectors. As convergence is approached,

it is less likely that the free Support Vectors will become bounded Support Vectors. The

feasible regions of the subproblems corresponding to these working sets then look more and
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more like<n and hence an unconstrained Newton step i.e.β = 1 provides the optimal step

size. Applying acceleration in these cases will result in a suboptimal step and hence slow

convergence. We summarize the merits and demerits of the individual heuristics discussed in

Table I.

We note that several other optimization techniques modify the original cost function by

introducing barrier and penalty functions [29] into the cost to account for constraint violation.

These methods have been minimally explored in the decomposition setting but they already

face problems if the optimal solution contained variables at bounds as these methods prevent

the variables from reaching the boundaries. To this end, we point out that the diversity of

datasets makes using any one fixed heuristic rather myopic in foresight. The extra degree

of freedom in choosing the working set at each iteration affords an algorithm which should

adapt to the problem. We believe that this is increasingly important when applying the Support

Vector Machine to online applications. In this work, we have described a heuristic framework

which has the initial workings of an adaptive algorithm. Further research will concentrate on

expanding the adaptive nature of this framework in order to increase the effectiveness of the

decomposition method for training Support Vector Machines.

VII. C ONCLUSION

In this paper, we describe a heuristic framework for the decomposition method for training

Support Vector Machines. We first provide some theoretical analysis concerning the working

set problem. Based on these results, we then proposed a series of heuristics which not only

TABLE I

COMPARISON OF ADVANTAGES AND DISADVANTAGES OF HEURISTICS

Heuristic Advantage Disadvantage

Shrinking Improves implementation run-time if Slow if recomputation of gradient occurs often.

majority of points stay optimal. May require more iterations if wrong points are shrunk.

Adaptive Search Window Reduces search space for working set. Success dependant on adaptation of window size.

Min Potential Overstep Assists in obtaining working sets Does not work if all violaters are NBSV.

with larger step sizes.

Min η12 Approximates the Naive Algorithm. Does not work well if data is degenerate.

Acceleration/Damping Boosts small step sizes in initial Does not work well if in final iterations only

and final iterations. NBSVs remain.

Naive Algorithm Requires fewer number of iterations. Very slow as problem size increases.
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select a better sequence of working sets but which also improves algorithm run times. The use

of heuristics is further motivated by the fact that improving the theoretical convergence rates

resulted in a degradation of run-time performance. Benchmark tests reveal that the proposed

heuristics can increase the performance of the decomposition algorithm in terms of iterations

and computation run-time compared to current algorithms.
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TABLE II

COMPARISON OF PERFORMANCE FOR TRAININGUCI ADULT BENCHMARKS ON GAUSSIAN KERNEL WITH C = 1 AND

σ2 = 10. ALGORITHM 1 IS D2C AND ALGORITHM 2 IS THE NAIVE SEARCH ALGORITHM (N1)

DataSet Size T1 T2 I1 I2

Adult 1 1605 0.48 56.53 611 598

Adult 2 2265 1.00 166.65 965 871

Adult 3 3185 1.92 609.81 1271 1210
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TABLE III

COMPARISON OF PERFORMANCE FOR TRAININGUCI ADULT BENCHMARKS ON GAUSSIAN KERNEL WITH C = 1 AND

σ2 = 10. ALGORITHM 1 IS D2C AND ALGORITHM 2 IS L IBSVM

Size T1 T2 I1 I2 CI12 CT12 µ12 ν12

1605 0.48 0.63 611 956 0.39 0.44 0.41 0.15

2265 1.00 1.52 965 1552 0.38 0.40 0.39 0.16

3185 1.92 3.34 1271 1943 0.40 0.36 0.38 0.14

4781 4.33 9.45 1835 2848 0.39 0.31 0.35 0.12

6414 7.89 19.80 2423 4078 0.37 0.29 0.33 0.12

11220 25.39 56.31 4364 7442 0.37 0.31 0.34 0.10

16100 53.91 94.17 6434 10283 0.38 0.36 0.37 0.09

22697 103.42 169.25 9563 15709 0.38 0.38 0.38 0.09

32561 217.22 329.48 14934 24738 0.38 0.40 0.39 0.08

TABLE IV

COMPARISON OF PERFORMANCE FOR TRAININGUCI ADULT BENCHMARKS ON L INEAR KERNEL WITH C = 0.05.

ALGORITHM 1 IS D2C AND ALGORITHM 2 IS L IBSVM

Size T1 T2 I1 I2 CI12 CT12 µ12 ν12

1605 0.41 0.39 627 979 0.39 0.51 0.45 0.94

2265 0.81 1.08 860 1625 0.35 0.43 0.39 0.95

3185 1.66 2.59 1247 2114 0.37 0.39 0.38 0.96

4781 3.72 7.52 1722 2620 0.40 0.33 0.36 0.97

6414 6.50 26.88 2187 3419 0.39 0.19 0.29 0.97

11220 20.80 47.59 3794 5456 0.41 0.30 0.36 0.98

16100 42.19 75.56 5289 6522 0.45 0.36 0.40 0.99

22697 86.25 146.47 7037 11558 0.38 0.37 0.37 0.99

32561 162.98 253.63 9397 15700 0.37 0.39 0.38 0.99
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TABLE V

COMPARISON OF PERFORMANCE FOR TRAININGUCI ADULT BENCHMARKS ON GAUSSIAN KERNEL WITH C = 1 AND

σ2 = 10. ALGORITHM 1 IS D2C AND ALGORITHM 2 IS SVMlight

Size T1 T2 I1 I2 CI12 CT12 µ12 ν12

1605 0.48 0.86 611 822 0.43 0.36 0.39 0.15

2265 1.00 1.99 965 1487 0.39 0.33 0.36 0.16

3185 1.92 3.58 1271 1765 0.42 0.35 0.38 0.14

4781 4.33 7.85 1835 2575 0.42 0.36 0.39 0.12

6414 7.89 15.97 2423 3886 0.38 0.33 0.36 0.12

11220 25.39 97.97 4364 6893 0.39 0.21 0.30 0.10

16100 53.91 175.64 6434 9714 0.40 0.23 0.32 0.09

22697 103.42 333.58 9563 14504 0.40 0.24 0.32 0.09

32561 217.22 672.58 14934 21331 0.41 0.24 0.33 0.08

TABLE VI

COMPARISON OF PERFORMANCE FOR TRAININGUCI ADULT BENCHMARKS ON L INEAR KERNEL WITH C = 0.05.

ALGORITHM 1 IS D2C AND ALGORITHM 2 IS SVMlight

Size T1 T2 I1 I2 CI12 CT12 µ12 ν12

1605 0.41 0.17 627 819 0.43 0.70 0.57 0.94

2265 0.81 0.52 860 1200 0.42 0.61 0.51 0.95

3185 1.66 1.05 1247 1858 0.40 0.61 0.51 0.96

4781 3.72 2.4 1722 2483 0.41 0.61 0.51 0.97

6414 6.50 4.18 2187 3071 0.42 0.61 0.51 0.97

11220 20.80 13.21 3794 4635 0.45 0.61 0.53 0.98

16100 42.19 30.08 5289 7015 0.43 0.58 0.51 0.99

22697 86.25 60.06 7037 10281 0.41 0.59 0.50 0.99

32561 162.98 129.39 9397 14196 0.40 0.56 0.48 0.99

MECSE-26-2005: "A Basic Heuristic Decomposition Framework for ...", D. Lai, N. Mani and M. Palaniswami



36

Fig. 4. Comparison of run-time performance (seconds) against LibSVM for training UCI Adult 9 using Gaussian kernel

over a range of C. Left to Right:σ2 = 1, 10, 100.
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Fig. 5. Comparison of run-time performance (seconds) againstSVMlight for training UCI Adult 9 using Gaussian kernel

over a range of C. Left to Right:σ2 = 1, 10, 100.
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TABLE VII

COMPARISON OF PERFORMANCE FOR TRAININGUCI WEB BENCHMARKS ONGAUSSIAN KERNEL WITH C = 5 AND

σ2 = 10. ALGORITHM 1 IS D2C AND ALGORITHM 2 IS L IBSVM

Size T1 T2 I1 I2 CI12 CT12 µ12 ν12

2477 2.13 0.63 1738 3104 0.36 0.77 0.57 0.89

3470 4.20 1.20 2396 3481 0.41 0.78 0.59 0.88

4912 6.19 2.17 2833 3803 0.43 0.74 0.58 0.86

7366 11.83 4.80 4143 6402 0.39 0.71 0.55 0.85

9888 18.61 8.39 5260 7390 0.42 0.69 0.55 0.84

17188 44.92 57.31 8913 11206 0.44 0.44 0.44 0.78

24692 91.20 107.39 11886 13519 0.47 0.46 0.46 0.76

49749 580.77 373.50 18263 20840 0.47 0.61 0.54 0.69

TABLE VIII

COMPARISON OF PERFORMANCE FOR TRAININGUCI WEB BENCHMARKS ONL INEAR KERNEL WITH C = 1.

ALGORITHM 1 IS D2C AND ALGORITHM 2 IS L IBSVM

Size T1 T2 I1 I2 CI12 CT12 µ12 ν12

2477 0.84 0.27 1811 5161 0.26 0.76 0.51 0.75

3470 2.19 0.63 3217 8698 0.27 0.78 0.52 0.66

4912 6.64 1.09 6646 12475 0.35 0.86 0.60 0.60

7366 12.55 2.59 9863 37744 0.21 0.83 0.52 0.51

9888 25.28 4.69 13435 32956 0.29 0.84 0.57 0.43

17188 41.97 15.55 20269 103225 0.16 0.73 0.45 0.31

24692 87.73 32.11 30503 146846 0.17 0.73 0.45 0.24

49749 337.84 187.72 48340 235591 0.17 0.64 0.41 0.15
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TABLE IX

COMPARISON OF PERFORMANCE FOR TRAININGUCI WEB BENCHMARKS ONGAUSSIAN KERNEL WITH C = 5 AND

σ2 = 10. ALGORITHM 1 IS D2C AND ALGORITHM 2 IS SVMlight

Size T1 T2 I1 I2 CI12 CT12 µ12 ν12

2477 2.13 1.44 1738 2764 0.39 0.60 0.49 0.89

3470 4.20 2.56 2396 3187 0.43 0.62 0.53 0.88

4912 6.19 4.3 2833 3803 0.43 0.59 0.51 0.86

7366 11.83 10.63 4143 6402 0.39 0.53 0.46 0.85

9888 18.61 22.75 5260 7390 0.42 0.45 0.43 0.84

17188 44.92 73.63 8913 11206 0.44 0.38 0.41 0.78

24692 91.20 143.86 11886 13519 0.47 0.39 0.43 0.76

49749 580.77 551.58 18263 20640 0.47 0.51 0.49 0.69

TABLE X

COMPARISON OF PERFORMANCE FOR TRAININGUCI WEB BENCHMARKS ONL INEAR KERNEL WITH C = 1.

ALGORITHM 1 IS D2C AND ALGORITHM 2 IS SVMlight

Size T1 T2 I1 I2 CI12 CT12 µ12 ν12

2477 0.84 0.52 1811 5552 0.25 0.62 0.43 0.75

3470 2.19 0.85 3217 7857 0.29 0.72 0.51 0.66

4912 6.64 1.47 6646 11591 0.36 0.82 0.59 0.60

7366 12.55 3.85 9863 29194 0.25 0.77 0.51 0.51

9888 25.28 4.41 13435 21219 0.39 0.85 0.62 0.43

17188 41.97 17.92 20269 63469 0.24 0.70 0.47 0.31

24692 87.73 34.39 30503 67856 0.31 0.72 0.51 0.24

49749 337.84 106.83 48340 107681 0.31 0.76 0.53 0.15
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