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Abstract : It is well known that one can collect the coefficients of the homgraphies between
two views into a large, rank deficient matrix. In principle, such an observation implies that
one can refine the accuracy of the estimates of the homography coefficients by exploiting
the rank constraint. However, the straightforward approach suggested by this observation is
impractical because it requires many homographies and it also does not take into account
correlations between the errors in the coefficients.

In a companion paper [4], we show how to jointly estimate multiple (but a realistic number
of) homographies over 2 views. By studying the special structure of the homography, we show
that it is possible to calculate the dimension 4 subspace of the homographies from ≥ 3 planes
(and, in principle, with even two planes). This contradicts what seems to be the accepted
situation regarding the exploitation of the rank-4 constraint amongst homographies: that more
than 4 planes are needed to calculate and exploit the dimension 4 subspace. Practical issues
arise because the homography coefficients, before rank-constrained refinement, are themselves
estimates whose noise covariances need to be characterised and accounted for. In this paper,
we develop a statistical analysis allowing for estimation of the covariance matrices required
for the calculation of low-rank “denoised” homographies.

1 Introduction

The homography is a projective linear mapping with much utility in computer vision and
photogrammetry. Much of this stems from the fact that the homography is the mapping
between the images of corresponding points, when those are the image points of 3D planar
“real world” points. The calculation of homographies has many applications: some stemming
from its utility in the transfer of points from one image to another (registration, construction
of panoramas etc.), and others from its utility in the extraction of camara and planar patch
relative poses (robotics, photogrammetry etc.). Thus, advances in accuracy of homography
registration has many applications. This paper is concerned with improving such accuracy. We
do so by exploiting the well established fact that homographies are often related in particular
ways related to subspaces and the ranks of associated matrices; in particular the rank 4
constraint [11] (see section 3).

One of the ways in which one can exploit the rank constraints is to project the noisy
data (the measured homography coefficients which generally will not maintain the low rank

1

MECSE-32-2005: "Homography estimation and heteroscedastic noise - a first ...", P. Chen and D. Suter



predicted from the noise-free quantities) onto the low rank subspace as a form of “denoising”.
In [3], the “denoising” capacity of the projection of a large low-rank matrix has been analyzed.
In the presence of i.i.d. Gaussian noise, the error, still residing in the low-rank approximation
matrix, depends on the ratio between the degree of freedom of the subspace and that of the
large matrix.

If we (temporarily, this issue is the main topic of this paper) suppose the errors in the
homography matrix entries are i.i.d. Gaussian then, if there are enough planes observed
(>> 9), the rank-4 projection will result in the error in the homographies being reduced by a
factor of

√
4
9 [3]. That is, a one third (33%) reduction in the average error in the coefficents

of the homographies can be gained. However, a large number of planes are required to gain
such a ratio (we note that the gains reported in [3], using synthetic data, see figure 1 of that
paper, are much less).

However, in practice, two factors prevent a useful direct application of the “denoising”
capacity to the homography refinement to achieve even the modest gains reported in [3].

First, if we were to determine the dimension 4 subspace directly from the currently available
approaches then at least 4 planes are required (and to actually gain any denoising from such
a recovered subspace, more than 4 planes are required.) There are some image pairs where it
would be difficult to find 4 planes (of any significant size).

Second, the refinement starts from the estimated homography parameters and, even if the
image measurements that were used to estimate these parameters were corrupted with i.i.d.
Gaussian noise, the same cannot be said about the parameters themselves. More precisely, the
homography estimation suffers from a well-known heteroscedastic noise problem [8, 9]: The
heteroscedastic noise arises due to the linearization in the direct linear transformation (DLT)
algorithm [6].

Without tackling these issues, it isn’t possible, in practice to achieve even the modest gains
reported in [3] (i.e., using real data rather than synthetic data), let alone come close to the
theoretical 33% gain for large numbers of homographies with i.i.d. noise in their coefficients.

In order to find a useful algorithm for so few planes, in a companion paper [4] we study
the special structure of the homography. Starting from the fact that the homographies can
be shown to lie in a rank 3 affine subspace, we show how 3 homographies suffice to obtain
useful constraints as it turns out that only a subset of 3-dimensional affine subspaces are
possible homographies. We show how to obtain the subspace with even one plane and the
Fundamental matrix. Further, we show that there is even more exploitable structure in that
the homography coefficients can be shown to lie in the “sum” of two rank one subspaces and
thus useful constraints can be applied with even as few as two planes (without the fundamental
matrix). The latter two special cases turn out to have some value in our overall algorithm,
even though we target the situation with ≥ 3 planes.

A practical implmentation of the algorithm suggested by the abovementioned analysis,
requires on to overcome the difficulty, associated with the heteroscedastic noise in the homog-
raphy parameters. In this paper we study the covariance of the error in the parameters. To
do this, we track the propagation of the noise in the image features, by employing first order
approximation techniques.

In section 2, we set the background by reviewing the relationship between the homography

2

MECSE-32-2005: "Homography estimation and heteroscedastic noise - a first ...", P. Chen and D. Suter



and the associated projection matrices and the rank 4 constraint for the induced homography
matrix. In section 3, we hint at how it is, in principle, possible to calculate a low-rank
subspace with as few as two planes. The details, are in the companion paper [4] but we give
enough details here to introduce a matrix of importance and whose noise characteristics we also
analyse here. In section 4, we first review the DLT and the normalized DLT algorithms for the
homography estimation. In section 5, we present how to analytically compute the statistical
property of the error in the estimated homography parameters (and in an associated matrix
required for our algorithm).

2 Rank-4 constraint

First, we cite the Result 12.1 on page 312 of [6], which describes the relationship between a
homography and the projection matrices. Given the projection matrices for 2 views

P = [I|0] P′ = [R|t] (1)

and the ith plane defined by πT
i X = 0 with πi =

[
vT
i 1

]T
, the homography induced by the

plane is x′ = Hix with a matrix representation:

Hi = R− tvT
i (2)

Thus, with the knowledge of R and t, the homography of the ith plane is characterized by the
vector vi. Note that this is a particular representation (we call it the canonical representation):
all matrices related to this matrix by a scale are also representations of the same homography.

The matrix H =
[

h1 h2 ... hn

]
9,n

, whose columns are homographies in canonical

form, can be expressed as the following, in terms of R, t, and {vi}:

H = vec(RT )
[

1 1 ... 1
]
1,n

−Ut
[

v1 v2 ... vn

]
3,n

(3)

where

Ut =

 t1I3

t2I3

t3I3


9,3

(4)

If we know R, t and {vi}, and we calculate the homographies according to (2), then
homography matrix is embedded in a dimension 3 affine subspace. However, homographies
are only defined up to a scale factor, and in practice we calculate the homography up to an
unknown scale. We can choose to select a special matrix representation for the class of matrices
representing the homography - for example, we can usually normalize the homography so that
||Hi||F = 1. However, any such choice will lead to different (and unknown) scale factors
between the chosen representative and the homography matrix defined by (2). In effect, this
means that the left hand vector of ones in (3) are now factors generally different from unity.
As a consequence, we can only calculate the dimension 4 subspace, rather than the dimension
3 affine subspace. However, the homography coefficients do lie in a particular restricted set
of 3-dimensional affine manifolds and this fact can be exploited to find the embedding 4-
dimensional subspace with less than 4 homographies.
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3 Calculation of the 4-dimensional subspace

Calculating the dimension 4 subspace would seem to require at least 4 planes (and then perform
an SVD to obtain a basis for the column space). This observation was made by Zelnik-Manor
and Irani [14, 7] who used it to criticise the utility of the homography rank constraint and
to contrast it with their homology based constraints which could be reduced to rank-3 form.
However, due to the special structure of the expressions for the homographies, one can in fact
adopt a less obvious approach that does not require 4 planes.

In this section, we hint at how to calculate the basis vectors of the embedding 4-dimensional
subspace, by studying the special structure of the homography from (2, 3).

In fact, one should not be surprised that 4 planes are not required to calculate the subspace
since the basis is clearly dependent only on t and R. Let us consider this problem from a
purely algebraic point of view (and ignoring the internal structure of R etc.). For n planes,
from (2), we need 9 + 3 + 3n parameters: 9 for R, 3 for t and 3 for each vi. While for n
homographies, there are 9n parameters (not all independent of course). If

9n ≥ 9 + 3 + 3n (5)

there exists possibility of determining R, t and {vi}. The solution for (5) is n ≥ 2. Two
planes suffice to determine the dimension 4 subspace. However, it is also possible to calculate
the subspace from the fundamental matrix and only one plane.

3.1 Calculation from ≥ 4 planes

This is the well established approach an is included here for completeness and to introduce
some notation.

Suppose that n (n ≥ 4 ) planes are observed over 2 views. For the ith plane, there exists
a homography with matrix representation 1

Hi: Hi =

 h1,i h2,i h3,i

h4,i h5,i h6,i

h7,i h8,i h9,i

, which projects the points of the first view upon the second

view. The homography Hi can be estimated from ≥ 4 points [6]. If we arrange the vector

hi =
[

h1,i h2,i ... h9,i

]T
as the ith column of a matrix H, i.e, H =

[
h1 h2 ... hn

]
,

then rank(H) = 4 [11], as shown above. In other words, all the vector homographies (columns
of hi) are restricted to a dimension 4 subspace. All we need do, in principle, is to use the
Singular Valued Decomposition to project the columns of Hi onto the basis formed by the
singular vectors associated with the four largest singular values. However, as mentioned
above, this will not be optimal if the noise in the homography coefficients is heteroscedastic.
Moreover, to achieve any reasonable “denoising” effect, much greater than 4 planes are needed
in practice.

1In this paper, a homography will be represented either as a 3 × 3 matrix or as a 9 × 1 vetor. We will use
Hi or hi for a matrix homography or its vectorised form, respectively. When its form can be determined from
the context, we only use the term of “homography”, which might be a matrix or a vector. H will denote the
matrix that have several vector homographies as its columns, as defined above. H is refered to as “homography
matrix”.
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3.2 Calculation from ≥ 3 planes

The crux is to note that the special structure of the Homography matrix implies that we need
only know the camera pose translation t, or, more accurately, only the direction of that vector.
Thus, we decompose the problem of finding the subspace basis into first finding this direction,
then solving for the remaining basis vector.

3.2.1 Calculation of the direction of translation t

From equation (3), we can see that second part of the column span is determined by Ut, as
defined in (4), which has only 3 parameters.

From the structure of Ut, one can see that only a restricted set of affine spaces are possible
- regardless of the values of t there are directions in R9 that are not in the span of the columns
of Ut.

Moreover, we can determine Ut up to a scale by determing the direction of t. In the
following, we show that the direction of t can be calculated from only 3 homographies.

Proof : Suppose 2 homographies with matrix representations Hi and Hj have been calcu-
lated, up to different unknown scales (all that can be done in practice): Hi = λi

(
R− tvT

i

)
and Hj = λj

(
R− tvT

j

)
.

Note: there exist 2 independent 3-vectors li for i = 1, 2 that span t⊥ (i.e., span{l1, l2} =
t⊥) and further

lTHi = λlTHj (6)

where l =
[

lx ly lz
]T

= c1l1 + c2l2 ∈ span{l1, l2} and λ = λj

λi
.

From (6), their cross product is a zero vector, i.e.,
[
HT

i l
]
×

HT
j l = 0, for any c1 and c2. In

column vector notation, we write the cross product as:

Mi,jL = 0 (7)

where L =
[

l2x l2y l2z lxly lxlz lylz
]T

and Mi,j is a 3× 6 matrix, whose coefficients are
defined in the appendix.

For n (n ≥ 3) homographies, we stack all the pairwise matrices Mi,j for i < j, obtaining
a 3C2

n × 6 matrix M:

[M]3Cn
2 ,6 =

[
MT

1,2 . . . MT
1,n MT

2,3 . . . MT
2,n . . . MT

n−1,n

]T

3C2
n,6

(8)

First, we prove that rank(M) = 3 and M has a dimension-3 null space, except when all
the planes are parallel.

Define L1 =
[

l21,x l21,y l21,z l1,xl1,y l1,xl1,z l1,yl1,z

]T
,

L2 =
[

l22,x l22,y l22,z l2,xl2,y l2,xl2,z l2,yl2,z

]T
and

L1,2 =
[

2l1,xl2,x 2l1,yl2,y 2l1,zl2,z l1,xl2,y + l2,xl1,y l1,xl2,z + l2,xl1,z l1,yl2,z + l2,yl1,z

]T
. From

the analysis above, it can be easily obtained that Mi,jL1 = 0 and Mi,jL2 = 0, as special
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cases of (7). Consequently, from L = c2
1L1 + c2

2L2 + c1c2L1,2 and the fact that Mi,jL = 0
holds for any c1 and c2, Mi,jL1,2 = 0 also holds. Thus, there exists a dimension-3 sub-
space: span{L1,L2,L1,2}, which is contained in the null space of Mi,j for i < j. Con-
sequently, span{L1,L2,L1,2} is contained in the null space of M, because the subspace of
span{L1,L2,L1,2} is independent of c1 and c2.

Thus, rank(M) ≤ 6−3, because M has a width of 6. Another fact is rank(M) ≥ 3 holds if
not all the planes are parallel. (Here, we do not present a proof for this.) Thus, rank(M) = 3
holds under this assumption.

Then, we show how to calculate the vector t from the knowledge of the dimension-3
null space of M. In practice, we calculate this dimension-3 null space of M up to a non-
singular 3 × 3 transform A. That is, the bais vectors spanning the null-space [N]6,3 =[

n1 n2 n3

]
=

[
L1 L2 L1,2

]
A. Each column of N can be arranged as a 3× 3 matrix:

Ni =

 n1,i n4,i n5,i

n4,i n2,i n6,i

n5,i n6,i n3,i

.

Now, we will prove that t is the left null vector of Ni, i.e., tTNi = 0.

If A is an identity matrix, i.e., A = I3, N′
i =

[
li,x li,y li,z

]T [
li,x li,y li,z

]
for (i =

1, 2), and N′
3 =

[
l1,x l1,y l1,z

]T [
l2,x l2,y l2,z

]
+

[
l2,x l2,y l2,z

]T [
l1,x l1,y l1,z

]
.

Then tTN′
i = 0 holds for i = 1, 2, 3, because of li ∈ t⊥ for i = 1, 2.

For any nonsingular A, Ni =
∑3

k=1 ak,iN′
k, because the column of N is a linear combination

of L1, L1 and L1,2 . Thus tTNi = 0 also holds. In order to make full use of the available data,
we juxtapose Ni as:

S =
[

N1 N2 N3

]
(9)

The solution of t, up to an unknown scale, is the left null vector of S. In presence of noise,
the left singular vector of S, associated with the least singular value, is taken as the solution
of t. End of the proof

In the analysis above, we need to calculate the dimension 3 null subspace of M. If the
homographies are noise free, there exists such a null subspace. However, error is inevitably
introduced in the homographies, due to the presence of noise in feature points. In practice,
we can use the SVD to calculate this null subspace: taking the 3 right singular vectors that
are associated with the 3 smallest singular values.

However, in doing so, the approach severely suffers from the noise in the images, especially
for the case of 3 planes. First, the homography estimation suffers from the heteroscedastic
noise. The error in the homography parameters cannot be modeled as i.i.d. Gaussian again.
Second, the process of calculating the matrix M also introduces the heteroscedastic noise
even if the error in the homographies could be modeled as i.i.d. Gaussian. Because of these
considerations, the direct SVD solution is very sensitive to the noise in the images.

In order to overcome this difficulty with the heteroscedastic noise, it is necessary to model
the error in the matrix of M and then to employ the bilinear approach [1, 2] or the AP
approach [10] to calculate weighted rank-3 approximation matrix: M3. Then, a reasonable
solution of N is the null subspace of this M3. We present the statistical analysis of the error
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in the homography parameters and in M in section 5. The definition of the weighted rank-r
approximation matrix is provided in the appendix.

4 Normalized DLT algorithm for homography estimation em-
bedded in a dimension 4 subspace

4.1 Overview of the DLT and the normalized DLT algorithm for homogra-
phy estimation

Here, we first review the normalized direct linear transform (DLT) algorithm [6] for homog-
raphy estimation. In this section, we suppose the third coordinate of the homogeneous repre-
sentation of a point is 1.

For a homography Hk =

 h1,k h2,k h3,k

h4,k h5,k h6,k

h7,k h8,k h9,k

, which maps the x =
[

x1 x2 1
]T

of the

kth plane in the first view upon x′ =
[

x′1 x′2 1
]T

on the second view: x′ = λHkx.
From x′ ×Hkx = 0, each pair of the matches, {xi,x′i}, produces a 3× 9 matrix:

Ai =

 0 −xT
i x′2,ix

T
i

xT
i 0 −x′1,ix

T
i

−x′2,ix
T
i x′1,ix

T
i 0

 (10)

which satisfies Aihk = 0. Stack ≥ 4 Ai as

A =
[

AT
1 . . . AT

n

]T
(11)

Ahk = 0 holds. hk is taken as the right singular vector of A, associated with the least singular
value. This is the DLT algorithm [6] for homography estimation.

In [6], a normalization step has been recommended. It consists of a translation and a
scaling, so that the centroid of the transformed points is the origin (0, 0) and their average
distance from the origin is

√
2. Suppose the centroid of the original points is (c1, c2) and their

average distance to this centroid is l. The normalization transform T is 1
l 0 − c1

l
0 1

l − c2
l

0 0 1

 (12)

Similarly, a normalization transform for the second view, T′, can be calculated.
The normalized DLT algorithm takes the DLT algorithm as the core algorithm. First,

calculate the transformed points for each view and their associated normalization transforms
T and T′. Second, using DLT, calculate the homography H̃k from the normalized matches.
Last, in the denormalization step, set

Hk = T′−1H̃kT (13)

as the homography for the plane in the original views.
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4.2 Homography estimation embedded in a dimension 4 subspace

In [3], it has been shown that, for the case of > 4 planes over 2 views, the accuracy of
the homography can be improved by projecting the homographies upon to the dimension 4
subspace, which is calculated from the homographies. However, although the new homography
claculated this way is optimal, measured by its distance to the dimension 4 subspace, it cannot
be ensured that this new homography is optimal in terms of the mapping accuracy.

Here, we first show how to calculate the homography embedded in a dimension 4 subspace:
We do not directly project one homography upon the dimension 4 subspace, instead we try to
find a homography, embedded in the dimension 4 subspace, which is optimal in terms of the
minimization of ||Ah||F .

Suppose the dimension 4 subspace basis U ∈ R9,4 is known and the linearization matrix
is A as in (11). The subspace constrained DLT solution is as follows: First, calculate the
solution of AUx = 0 as x̂ = b (standard smallest singular value way). Second, take the Ub
as the solution of the homography, which is obviously embedded in the subspace U.

As in the normalized DLT, we also use the normalization step in this dimension-4 con-
strained homography estimation. Suppose n planes are available. First, taking all the feature
points in the n planes as a whole set, calculate the normalization transforms T and T′, for
the first view and the second view respectively. Second, for each normalized plane, calculate
its homography, and calculate the dimension 4 subspace U of these homographies. Third,
for each normalized plane, calculate its subspace-U constrained homography. Finally, calcu-
late the denormalized homographies for all the planes, as in the denormalization step of the
normalized DLT.

This is the basic idea. However, we incorporate several refinements as presented in [4].

5 Statistical analysis of the error in the homography parame-
ters and in the matrix M in (8)

In section 4 we sketeched some ideas behind [4]. One issue we address in detail in this paper is:
how to obtain the statistical properties of the error in the homography parameters and in the
matrix M in (8). In this section, we present a statistical analysis of the error in the estimated
homography parameters. The covariance matrix of the error in 9 parameters is analytically
computed. First, we show how to calculate the covariance matrix of the errors for the DLT
algorithm. Then, we extend this to the normalized DLT algorithm. We also show how to
compute the covariance matrix of the error in the matrix M in (8). We assume a small noise
level so that the first order expansions/approximation can be used.

5.1 The case of the DLT algorithm

Suppose the matrix A in (11) is obtained from n noise free feature matches and that the ith

noise free feature matches xi and x′i are corrupted with the noise of (εi,1, εi,2), and
(
ε′i,1, ε

′
i,2

)
,
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respectively. 2

The essence of the analysis below is to represent the error in the homography parameters
in terms of the random variables {εi,1, εi,2, ε

′
i,1, ε

′
i,2} for (1 ≤ i, j ≤ n). Here, we use the second

subscript in εi,• to denote the x or y coordinates in the 2d images.
Using the SVD [5], A can be decomposed as: A = USVT , where U ∈ R3n,3n, V ∈ R9,9,

UUT = I3n, VVT = I9, and S = diag{s1, s2, . . . , s8, 0} ∈ R3n,9. The noise-free homography
vector is the 9th column of V: v9. Due to the noise of {εi,1, εi,2} and {ε′i,1, ε′i,2}, in xi and x′i
respectively, the error Ei in the ith block of A, Ai, is:

Ei =

 0 0 0 −εi,1 −εi,2 0 Ei,{1,7} Ei,{1,8} ε′i,2
εi,1 εi,2 0 0 0 0 Ei,{2,7} Ei,{2,8} −ε′i,1

Ei,{3,1} Ei,{3,2} −ε′i,2 Ei,{3,4} Ei,{3,5} ε′i,1 0 0 0

 (14)

where Ei,{1,7} = x′i,2εi,1 +xi,1ε
′
i,2 = −Ei,{3,1}, Ei,{1,8} = x′i,2εi,2 +xi,2ε

′
i,2 = −Ei,{3,2}, Ei,{2,7} =

−x′i,1εi,1 − xi,1ε
′
i,1 = −Ei,{3,4}, and Ei,{2,8} = −x′i,1εi,2 − xi,2ε

′
i,1 = −Ei,{3,5}. Quadratic terms

have been dropped.
Define C as the tranformed error matrix:

C = UTEV (15)

From the matrix perturbation theory [13, 12], the first order perturbed solution for the DLT
algorithm is

v′9 = v9 −
8∑

i=1

ci,9vi

si
(16)

The second term in (16) is the error in the estimated parameters.
The entries in Ei are random variables, as are ci,j also. Each ci,j is a linear combination of

the 4n random variables: {εi,1, εi,2, ε
′
i,1, ε

′
i,2} for 1 ≤ i, j ≤ n. Consequently, the second term

in (16) is also a random vector: each entry of which is a linear combination of the 4n random
variables. Thus, we can express the error in the parameters as a 9× 4n matrix: Ξh ∈ R9×4n.

In order to do this, we represent the errors of E as a linear combination of the 4n matrices:
a stack of 4n 3n × 9 matrices, each of which represents the error component in one of 4n
“directions”: {εi,1, εi,2, ε

′
i,1, ε

′
i,2} for 1 ≤ i ≤ n.

E =
n∑

i=1

(
εi,1E4i−3 + εi,2E4i−2 + ε′i,1E

4i−1 + ε′i,2E
4i

)
(17)

For example, the (4(i− 1) + j)th matrix E4(i−1)+j , for 1 ≤ i ≤ n and 1 ≤ j ≤ 4, is[
0T . . . 0T

[
E4(i−1)+j

]T
0T . . . 0T

]T

(18)

2Note that x in subsection 4.1 is used for the homogeneous representation of a feature point. By a slight
abuse of notation, we will also use x to represent the feature points in nonhomogeneous form: with x and y
coordinates as its two entries.
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where 0 is a 3 × 9 zero matrix and only the ith block E4(i−1)+j is nonzero. Using (14), the
3× 9 matrix E4(i−1)+j can be calculated: see appendix C.

Then, for each 3n× 9 matrix Ei, calculate Ci as

Ci = UTEiV (19)

Substituting (19) and (17) into (15), the transformed error matrix C is represented as a 3n×9
random matrix:

C =
n∑

i=1

(
εi,1C4i−3 + εi,2C4i−2 + ε′i,1C

4i−1 + ε′i,2C
4i

)
(20)

Consequently, the second term in (16) can be computed. Specifically, take the 9× 1 vector ξj

ξj = −
8∑

i=1

cj
i,9vi

si
(21)

as the jth column of Ξhk
=

[
ξ1 ξ2 ... ξ4n

]
.

Although the analysis above looks complicated, the computation can be greatly reduced
by taking into consideration of these two facts: From (21), only the first 8 entries of the 9th

column of Cj are needed, and each Ej has only one nonzero 3× 9 block in (18).
As said above, the aim of this statistical analysis is to represent the error in the homography

parameters in terms of the random variables of {εi,1, εi,2, ε
′
i,1, ε

′
i,2} for (1 ≤ i, j ≤ n):

∆(hk) = Ξhk
e (22)

where e =
[

ε1,1 ε1,2 ε′1,1 ε′1,2 . . . εn,1 εn,2 ε′n,1 ε′n,2

]T

4n×1
.

of the matrix Ξhk
. Thus, The error covariance matrix is

Chk
= Ξhk

ΠΞT
hk

(23)

where Π is the 4n × 4n covariance matrix for the noise e in the image points. This fact
will be employed in the statistical analysis of the normalized DLT algorithm. In the special
case, where i.i.d. 0-mean-σ2-variance Gaussian (feature point) noise is assumed, the error
covariance matrix in the homography is

Chk
= σ2Ξhk

ΞT
hk

(24)

Note that the calculation above of Ci = UTEiV has to be computed 4n times, for (1 ≤
i ≤ 4n). By a considerable abuse of notation that simplifies the exposition, such an operation
will be denoted as C = UTEV, even though UT and V are respectively 3n × 3n and 9 × 9
matrices while E is a stack of 4n 3n× 9 matrices.
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5.1.1 The effect of the normalization step

In this subsection, we analyze the effect of the normalization step on the calculated homogra-
phy. Here, different from the standard DLT definition, the normalization step is to scale the
homography coefficients so that its Frobenius norm is 1,

∆(
hk

||hk||F
) =

∆(hk)
||hk||F

+ hk∆(
1

||hk||F
) (25)

where ∆ (hk) is defined in (22), ∆( 1
||hk||F

) = − 1
||hk||3F

∑9
i=1 hi∆(hi), hi is the ith component

of hk and ∆(hi) is the ith row of ∆hk.

5.1.2 Replacing noise free data

When presenting a statistical analysis of the error in the homography above, we assumed that
the noise free feature points are available. We now examine this assumption. From (16) and
(21), each column ξk is a linear combination of {vi|i < 9}. This means that the matrix Ξhk

lies in the subspace spanned by these 8 vectors. Consequently, the covariance matrix Chk
in

(24) and (23) has a zero singlar value and the associated singlar vector is the ground truth
homography.

In practice, we do not have this knowledge of the ground truth data. An obvious solution,
as adopted in this paper, is instead to use the noisy data (actually observed) instead. In
assessing the impact of this approximation, we use the following measures to describe the
differences: ∣∣∣∣(h̃k − hk

)T
ui −

(
h̃k − hk

)T
ũi

∣∣∣∣∣∣∣∣(h̃k − hk

)T
ui

∣∣∣∣ (26)

where h̃k and hk denote the homographies, calculated from noisy data and noise free data,
respectively, and ũi and ui are the singular vectors of the covariance matrices C ˜hk

and Chk

also from noisy data and noise free data, respectively. (26) measures the differences of the
error’s projections upon the directions ũi and ui, i.e., the effect of the replacement of noisy
data for noise free data. Experiments show that, for i < 9, the above measure is less than
0.01. This means that the difference introduced by this replacement of noisy data for noise
free data can be overlooked.

It is quite another matter when one considers the 9th direction ũ9 of C ˜hk
. From the above

calculations, it can be seen that, even with the noisy data, C ˜hk
still has a rank of 8, and its

null vector is the calculated homographyy. Were the ground truth feature points available, ũ9

can be expressed as

ũ9 = u9 +
8∑

j=1

λjuj (27)

11

MECSE-32-2005: "Homography estimation and heteroscedastic noise - a first ...", P. Chen and D. Suter



In practice, because of ||ũ9||F = 1,

ũ9 =
u9 +

∑8
j=1 λjuj

||u9 +
∑8

j=1 λjuj ||F
=

u9 +
∑8

j=1 λjuj√
1 +

∑8
j=1 λ2

j

≈

1− 1
2

8∑
j=1

λ2
j

 u9 +
8∑

j=1

λjuj


So the projecion of the error upon the ũ9 direction is

(ũ9 − u9)
T ũ9 = c− 3c2 + 2c3 (28)

where

c =
1
2

8∑
j=1

λ2
j (29)

From (27), λj = ũT
9 uj = (ũ9 − u9)

T uj for j < 9. It is clear that λj is the error’s projection
upon uj , i.e., approximately the error’s projection upon ũj , because the difference between
these two directions, measured by (26), can be ingored. (Note that h̃k and hk are ũ9 and
u9, respectively). Since λj << 1, the second order and third order terms in (28) can also be
ignored.

To first-order perturbation, λj is indeed a 0-mean Gaussian random variable, with its
variance as the jth largest singlar value of Chk

: σ2
j . Thus, c in (29) is a chi-square-like

random variable: its expectation is E(c) = 1
2

∑8
j=1 σ2

j and its variance is var(c) = 1
2

∑8
j=1 σ4

j .
In order to account for error c in the ũ9 direction, we scale the normalized homography

upto a factor of 1− c and set the 9th singular value of C ˜hk
as var(c).

5.2 Extension to the normalized DLT algorithm

In the normalized DLT algorithm (13), two factors have to be considered : First, T and
T′ depend upon the measurements and so are random matrices; Second, the noise in the
normalized matches will not be i.i.d.

Note that, as in section 1, we have use the symbols hk and Hk, for the matrix and vector
notations of a homography.

From (13),

∆(Hk) = ∆(T′−1)H̃kT + T′−1∆(H̃k)T + T′−1H̃k∆(T) = ΞHk
e (30)

In (30), all ∆(•) are 3 × 3 random matrices, which can be represented by a stack of 4n
3× 3 matrices.

5.2.1 Calculation of ∆(H̃k)

The critical point to calculate ∆(H̃k) in (30) is to analyze the random variable of the inverse of

the scale, as 1
l in (12); where l =

√∑n

i=1
(xi,1−x1)2+(xi,2−x2)2

2n , x1 =
∑n

i=1
xi,1

n and x2 =
∑n

i=1
xi,2

n .
Define xi,• as the centered coordinates: xi,1 = xi,1 − x1 and xi,2 = xi,2 − x2. Due to the noise
in the feature points, the error in the centered coordinates is

∆
(
xi,1

)
=

[
−1/n . . . −1/n (n− 1)/n −1/n . . . −1/n

] [
ε1,1 . . . εn,1

]T
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∆
(
xi,2

)
=

[
−1/n . . . −1/n (n− 1)/n −1/n . . . −1/n

] [
ε1,2 . . . εn,2

]T

where the (n− 1)/n are the ith components in the vectors. Thus, the error in the inverse of l
is:

∆
(

1
l

)
= − 1

2nl3

n∑
i=1

[
xi,1∆

(
xi,1

)
+ xi,2∆

(
xi,2

)]
(31)

The normalized image feature is
xi,•

l . The error in it is ∆
(

xi,•
l

)
= xi,•∆

(
1
l

)
+

∆(xi,•)
l , which

can be expressed in pT
i,•e. Similarly, the error in the second normalized view is p′T

i,•e. We
stack the vectors pT and p′T as

P =
[

pi,1 pi,2 p′
1,1 p′

1,2 . . . pn,1 pn,2 p′
n,1 p′

n,1

]T

Pe is the error in the normalized coordinates. According to (22),

∆(H̃k) = ΞPe = Ξ
H̃k

e (32)

where Ξ is calculated as in Ξh in (22), however, Ξ is arranged as a stack of 4n 3× 3 matrices.

5.2.2 Calculation of ∆(T)

Another quantity will be used in calculating ∆(T) and ∆(T′−1) is ∆(ci), the error in the
centroid of the original feature points.

∆c• =
1
n

n∑
i=1

εi,• (33)

From (12),

∆(T) =

 ∆(1
l ) 0 −c1∆(1

l )−
∆(c1)

l

0 ∆(1
l ) −c2∆(1

l )−
∆(c2)

l
0 0 0

 (34)

Substituting (31) and (33) into (34), we can calculate ∆T.
From the first order approximation, (T + ∆T)−1 = T−1 −T−1∆TT−1

∆(T′−1) = −T′−1∆(T′)T′−1 (35)

where ∆(T′) can be calculated as in (34).
Substituting (32), (34) and (35) into (30), we obtain ∆(Hk) and the covariance matrix of

hk: Ξhk
.
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5.3 Noise level estimation

Now, we have represented the errors in the homography parameters in terms of random vari-
ables, i.e. the noise in the image feature points. For i.i.d. Gaussian noise or general noise
in the feature points, the covariance matrix for the error in the parameters, can be obtained
by (24) or (23). To do so, we need to know some statistical properties of the noise in the
image points. Here, we consider the simplest case, where the noise in the image points is i.i.d.
0-mean-σ2-variance Gaussian noise. In this case, the covariance matrix in (24) is C = σ2ΞΞT .
In some cases, the covariance matrix, up to a scale, suffices, i.e., we can take C = ΞΞT as
the covariance matrix. Although the noise level σ is not needed in Algorithm and Core
algorithm of [4], we still present how to estimate the noise level, here. The estimate is very
accurate in our experiment, although we do not provide experimental results about this in
this paper. The major tool, as in the sections above, is also the first order approximation.

Due to the noise in the image points, there exists difference between the projection Hkx
and x′. In this part, we will show that the projection error can also be represented as a random
variable, which depends on the noise in the images: {εi,1, εi,2, ε

′
i,1, ε

′
i,2} for (1 ≤ i, j ≤ n).

Suppose that the noise free homography is Hk =

 h1 h2 h3

h4 h4 h5

h7 h8 h9

. H projects each point

{xi,1, xi,2} in the first view upon the second view as, by taking x′i,1 as an example:

x′i,1 =
h1 ∗ xi,1 + h2 ∗ xi,2 + h3

h7 ∗ xi,1 + h8 ∗ xi,2 + h9
(36)

Due to the noise, the projection upon the second view is

[h1 + ∆(h1)] ∗ (xi,1 + εi,1) + [h2 + ∆(h2)] ∗ (xi,2 + εi,2) + h3 + ∆(h3)
[h7 + ∆(h7)] ∗ (xi,1 + εi,1) + [h8 + ∆(h8)] ∗ (xi,2 + εi,2) + h9 + ∆(h9)

(37)

According to the first order approximation, a+∆a
b+∆b = a

b + ∆a
b − a∆b

b2
approximately holds. From

this, (37) equals to

x′i,1 +
A

E
− BD

E2
(38)

where A = h1εi,1 + h2εi,2 + xi,1∆(h1) + xi,2∆(h2) + ∆(h3), D = h1 ∗ xi,1 + h2 ∗ xi,2 + h3,
B = h7εi,1 + h8εi,2 + xi,1∆(h7) + xi,2∆(h8) + ∆(h9), and E = h7 ∗ xi,1 + h8 ∗ xi,2 + h9. Note
that the second order terms, like ∆(h•)εi,◦, have been dropped. Including the noise in the
observed x′i,1, the projection error is actually A

E − BD
E2 − ε′i,1. It can be represented as qT

i,1e.
Similarly, from the projection of the second coordinate, qT

i,2e can be obtained. Stack qT
i,• as

Q =
[

q1,1 q1,2 . . . qn,1 qn,2

]T
(39)

In practice, the projection error is actually available, as ς. Then, Qe = ς approximately
holds. Because the i.i.d. Gaussian noise is assumed here, ||qi,•||2F σ2 = ς2

2(i−1)+•. Then, the
noise level can be estimated as:

σ̂ =
||ς||F
||Q||F

(40)
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Note, the noise levels in two views can be assumed as different, up to a scale. Suppose σ1

and σ2 are the noise level in the 1st and 2nd views, respectively. Suppose, further, σ1 = λσ2.
Then, by multiplying the (4 • +1)th and (4 • +2)th columns of Q by a factor of λ, we can
calculate σ̂2, according to (40). Consequently, σ̂1 = λσ̂2.

5.4 Error in the matrix M in (8)

As said in the above, the error in the matrix M in (8) cannot be considered as i.i.d. Gaussian,
due to 2 reasons: the heteroscedastic error, introduced in the calculation of M; and the
heteroscedastic error in the homography parameters.

As in the analysis above, we will track how the errors in the homography parameters propa-

gate in the matrix M. First, assume the error in each homography hi is ηi =
[

ηi,1 . . . ηi,9

]T
.

Define the errors in the n homographies as η: η =
[

ηT
1 . . . ηT

n

]T
. Only one assumption

for these errors is made: the errors in each homography are of zero mean and independent
from those in another homography, as is reasonable in the problem in this paper.

Obviously, the errors in the matrix M cannot be considered as row independent or column
independent. Thus, we have to arrange the 3Cn

2 ×6 matrix M as a 18Cn
2 ×1 vector: vec(MT ).

Correspondingly, by tracking the error in the homographies, the error in this vector, denoted
by ζ, is:

ζ = Φη (41)

where the quadratic order errors has been dropped.
Φ is an 18C2

n × 9n matrix, with Φi,j as an 18× 9n matrix:

Φ =
[

ΦT
1,2 . . . ΦT

1,n ΦT
2,3 . . . ΦT

2,n . . . ΦT
n−1,n

]T
(42)

The definition of Φi,j in (42) will be given in the appendix.
From (41), the covariance matrix of ζ is

Cζ = ΦE(ηηT )ΦT (43)

The covariance matrix E(ηiη
T
i ) have been studied in sections 5.1 and 5.2: It can be calcu-

lated from the feature points while calculating the homography. E(ηηT ) is a block diagonal
matrix: E(ηηT ) = diag

{
E(ηiη

T
i )

}
because ηi is independent of ηj for i 6= j.

6 Conclusion

In this paper, we show how to analytically compute the statistical property of the error in the
homography parameters and an associated matrix required for the algorithms in [4]. To the
best of our knowledge, no similar work has been done to analyze the statical property of the
error in the estimated parameters. This techniques of our work is potentially useful in many
problems, where the estimated parameters will be used as the input for further analysis. A
direct application is to employ the same techniques in the calculation of the induced dimension-
4 homography subspace in the cases of 2-plane-over-multiple-plane or multiple-plane-over-
multiple-plane [14, 7].
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A Definition of weighted rank-r approximation matrix

We suppose 0-mean noise in the entries of the matrix M ∈ Rm,n but we do not assume row or
column independence. In order to characterize the noise in M, we first rearrange M as a vector
vec(M) ∈ Rmn,1. Suppose the covariance matrix for the noise in vec(M) is C. The weighted
rank-r approximation matrix of M is defined to be Mr that has properties: rank (Mr) = r
and Mr minimizes the objective function of (vec (M−X))T C−vec (M−X). Methods for
finding rank r approximation matrix can be found, as the Bilinear approach in [1, 2] and the
AP approach in [10].

B Definition of the matrix M in (7) in section 3.2.1

Mi,j =

 hi,1hj,2 − hj,1hi,2 hi,4hj,5 − hj,4hi,5 hi,7hj,8 − hj,7hi,8 M1,4
i,j M1,5

i,j M1,6
i,j

hi,1hj,3 − hj,1hi,3 hi,4hj,6 − hj,4hi,6 hi,7hj,9 − hj,7hi,9 M2,4
i,j M2,5

i,j M2,6
i,j

hi,2hj,3 − hj,2hi,3 hi,5hj,6 − hj,5hi,6 hi,8hj,9 − hj,8hi,9 M3,4
i,j M3,5

i,j M3,6
i,j


with M1,4

i,j = hi,1hj,5−hj,1hi,5+hi,4hj,2−hj,4hi,2, M1,5
i,j = hi,1hj,8−hj,1hi,8+hi,7hj,2−hj,7hi,2,

M1,6
i,j = hi,4hj,8 − hj,4hi,8 + hi,7hj,5 − hj,7hi,5, M2,4

i,j = hi,1hj,6 − hj,1hi,6 + hi,4hj,3 − hj,4hi,3,
M2,5

i,j = hi,1hj,9 − hj,1hi,9 + hi,7hj,3 − hj,7hi,3, M2,6
i,j = hi,4hj,9 − hj,4hi,9 + hi,7hj,6 − hj,7hi,6,

M3,4
i,j = hi,2hj,6− hj,2hi,6 + hi,5hj,3− hj,5hi,3, M3,5

i,j = hi,2hj,9− hj,2hi,9 + hi,8hj,3− hj,8hi,3, and
M3,6

i,j = h5,ih9,j − h5,jh9,i + h8,ih6,j − h8,jh6,i

C Definition of E
4(i−1)+k

in (18) in section 5.1

E4(i−1)+1 =

 0 0 0 −1 0 0 x′i,2 0 0
1 0 0 0 0 0 −x′i,1 0 0

−x′i,2 0 0 x′i,1 0 0 0 0 0



E4(i−1)+2 =

 0 0 0 0 −1 0 0 x′i,2 0
0 1 0 0 0 0 0 −x′i,1 0
0 −x′i,2 0 0 x′i,1 0 0 0 0



E4(i−1)+3 =

 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −xi,1 −xi,2 −1
0 0 0 0 xi,1 xi,2 1 0 0



E4(i−1)+4 =

 0 0 0 0 0 0 xi,1 xi,2 1
0 0 0 0 0 0 0 0 0

−xi,1 −xi,2 −1 0 0 0 0 0 0


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D Definition for Φi,j in (42) in section 5.4

Φi,j =

 06,9(i−1) φi,j,1,2 06,9(j−i−1) φi,j,1,4 06,9(n−j)

06,9(i−1) φi,j,2,2 06,9(j−i−1) φi,j,2,4 06,9(n−j)

06,9(i−1) φi,j,3,2 06,9(j−i−1) φi,j,3,4 06,9(n−j)


where

φi,j,1,2 =



hj,2 −hj,1 0 0 0 0 0 0 0
0 0 0 hj,5 −hj,4 0 0 0 0
0 0 0 0 0 0 hj,8 −hj,7 0

hj,5 −hj,4 0 hj,2 −hj,1 0 0 0 0
hj,8 −hj,7 0 0 0 0 hj,2 −hj,1 0
0 0 0 hj,8 −hj,7 0 hj,5 −hj,4 0



φi,j,1,4 =



−hi,2 hi,1 0 0 0 0 0 0 0
0 0 0 −hi,5 hi,4 0 0 0 0
0 0 0 0 0 0 −hi,8 hi,7 0

−hi,5 hi,4 0 −hi,2 hi,1 0 0 0 0
−hi,8 hi,7 0 0 0 0 −hi,2 hi,1 0

0 0 0 −hi,8 hi,7 0 −hi,5 hi,4 0



φi,j,2,2 =



hj,3 0 −hj,1 0 0 0 0 0 0
0 0 0 hj,6 0 −hj,4 0 0 0
0 0 0 0 0 0 hj,9 0 −hj,7

hj,6 0 −hj,4 hj,3 0 −hj,1 0 0 0
hj,9 0 −hj,7 0 0 0 hj,3 0 −hj,1

0 0 0 hj,9 0 −hj,7 hj,6 0 −hj,4



φi,j,2,4 =



−hi,3 0 hi,1 0 0 0 0 0 0
0 0 0 −hi,6 0 hi,4 0 0 0
0 0 0 0 0 0 −hi,9 0 hi,7

−hi,6 0 hi,4 −hi,3 0 hi,1 0 0 0
−hi,9 0 hi,7 0 0 0 −hi,3 0 hi,1

0 0 0 −hi,9 0 hi,7 −hi,6 0 hi,4



φi,j,3,2 =



0 hj,3 −hj,2 0 0 0 0 0 0
0 0 0 0 hj,6 −hj,5 0 0 0
0 0 0 0 0 0 0 hj,9 −hj,8

0 hj,6 −hj,5 0 hj,3 −hj,2 0 0 0
0 hj,9 −hj,8 0 0 0 0 hj,3 −hj,2

0 0 0 0 hj,9 −hj,8 0 hj,6 −hj,5



φi,j,3,4 =



0 −hi,3 hi,2 0 0 0 0 0 0
0 0 0 0 −hi,6 hi,5 0 0 0
0 0 0 0 0 0 0 −hi,9 hi,8

0 −hi,6 hi,5 0 −hi,3 hi,2 0 0 0
0 −hi,9 hi,8 0 0 0 0 −hi,3 hi,2

0 0 0 0 −hi,9 hi,8 0 −hi,6 hi,5


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