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Abstract: Linear subspace analysis (LSA) has become rather ubiquitous in a wide range 
of problems arising in pattern recognition and computer vision. The essence of these 
approaches is that certain structures are intrinsically (or approximately) low 
dimensional: for example, the factorization approach to the problem of structure from 
motion (SFM) and principal component analysis (PCA) based approach to face 
recognition. In LSA, the singular value decomposition (SVD) is usually the basic 
mathematical tool. However, analysis of the performance, in the presence of noise, has 
been lacking. We present such an analysis here. First, the “denoising capacity” of the 
SVD is analysed. Specifically, given a rank-r matrix, corrupted by noise – how much 
noise remains in the rank-r projected version of that corrupted matrix? Second, we study 
the “learning capacity” of the LSA-based recognition system in a noise-corrupted 
environment. Specifically, LSA systems that attempt to capture a data class as belonging 
to a rank-r column space will be affected by noise in both the training samples 
(measurement noise will mean the learning samples will not produce the “true 
subspace”) and the test sample (which will also have measurement noise on top of the 
ideal clean sample belonging to the “true subspace”).    
These results should help one to predict aspects of performance and to design more 
optimal systems in computer vision, particularly in tasks, such as SFM and face 
recognition. Our analysis agrees with certain observed phenomenon, and these 
observations, together with our simulations, verify the correctness of our theory.  
 
Index terms: Singular value decomposition,  Linear subspaces, Principal component 
analysis, Structure from motion, Factorization method, Homography, Face recognition, 
Matrix perturbation, First-order perturbation, Multiple eigenvalue/singular value. 
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1. Introduction 
Linear subspace analysis has found application in many problems in computer 

vision and pattern recognition, where the high-dimensional representations of certain 

structures are intrinsically (or approximately) low dimensional. In this paper we focus on 

several very prominent problems:  Structure from Motion (SFM), homography estimation, 

and PCA-based face recognition, although several other computer vision and pattern 

recognition tasks fall within the framework of our analysis.  

Note: This paper supersedes technical report MECSE-6-2003 P. Chen and D. 

Suter “An Analysis of Linear Subspace Approaches for Computer Vision and Pattern 

Recognition”. The present paper contains corrections, an extra section on homography 

refinement (see section 3.1) and the text is considerably re-organised). 

1.1.  Applications of Linear Subspace Analysis 
 

Homography Estimation 
The induced homography matrix over 2 views lies in a dimension-4 subspace 

(Shashua and Avidan 1996). Similarly, the “relative homographies” of 2 planes over 

multiple views reside in a dimension-4 subspace (Zelnik-Manor and Irani 1999; Zelnik-

Manor and Irani 2002). Furthermore, the dimension-4 constraint also holds for the case of 

multiple-plane-over-multiple-view (Zelnik-Manor and Irani 1999; Zelnik-Manor and Irani 

2002). Exploitation of this low rank constraint is potentially very attractive for subsequent 

tasks (e.g., the 3-D structure of the scene being imaged, image mosaicing etc.). However, 

this paper will show that the denoising gains, of exploiting the low rank constraint in this 

context, are fundamentally more limited than the potential gains of exploitation of the low 

rank constraint in Structure From Motion. 
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Structure from Motion (SFM) 
In the SFM context, one extracts from the image sequence the coordinates of 

various tracked points (or other geometric features such as lines). These coordinates may 

be assembled into a measurement matrix, which is essentially low dimensional despite the 

matrix (itself) usually being physically huge. For example, under the affine models, the 

measurements are generally restricted to a dimension-4 subspace (Tomasi and Kanade 

1992; Poelman and Kanade 1997; Irani 1999; Kahl and Heyden 1999; Kanatani 2001; 

Irani 2002). (Although the registered measurement matrix can be of rank 3 (Tomasi and 

Kanade 1992; Poelman and Kanade 1997; Kahl and Heyden 1999; Kanatani 2001).)  In 

such situations one can use the low-rank constraint, imposed by an SVD based rank 

projection, to effectively “denoise” the measurement matrix (and to also provide a starting 

factorization into the product of a matrix related to structure and a matrix related to 

motion). Standard techniques (Tomasi and Kanade 1992; Poelman and Kanade 1997; 

Irani 1999; Kahl and Heyden 1999; Kanatani 2001; Irani 2002) can then be used to factor 

the “denoised” matrix into structure and motion factors. We are not concerned with the 

factorization stage here. 

It is important to realize that in Structure from Motion, the exploitation of the low 

rank constraint (to reduce noise) is only one part of a complete system. Moreover, there 

are many practical issues that need to be tackled: first and foremost, the data matrix is 

invariably going to be incomplete as the tracker loses track or loses sight of features 

during the tracking stage. In an already published paper (Chen and Suter 2004a), we 

tackled this particular issue and the solution we provided was informed by the 

theory/analysis we present here. In that context, the theory enabled us to develop a 
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heuristic that could be used to decide when the denoising capacity gained by adding extra 

observations (extra tracked features or extra images containing previously tracked 

features) was outweighed by the possible adverse affects that extra data may produce in 

terms of the need to impute the missing values in tracks. The current paper focuses on the 

more general application of, and theoretical justification of, the theory behind the 

heuristic in (Chen and Suter 2004a). For our purposes here, and for space limitations, we 

focus only on the denoising capacity aspects and ignore implementation issues of a 

“complete” SFM algorithm. 

PCA based Face Recognition 
Another particularly active area of computer vision research, also employing 

subspace analysis, is that of PCA-based face recognition* (Turk and Pentland 1991; 

Hallinan 1994; Eipstein et al. 1995). A human face, in typical applications, must be 

recognized despite illumination changes between the target image (to be recognized) and 

the database of candidate images. It has been observed that: “the variations between the 

images of the same face due to illumination and viewing direction are almost larger than 

image variations due to change in face identity” (Moses et al. 1994). 
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Here, we have to clarify the difference between the common PCA (Turk and Pentland 1991; Hallinan 1994; 
Eipstein et al. 1995) and linear subspace analysis (Belhumeur et al. 1997; Basri and Jacobs 1999; Basri and 
Jacobs 2003). In face recognition and related applications, several terminologies, like PCA (Turk and 
Pentland 1991), eigenface (Turk and Pentland 1991) and eigenimage (Eipstein et al. 1995), have been used 
for such dimensionality reduction techniques. PCA (Turk and Pentland 1991; Hallinan 1994; Eipstein et al. 
1995) works on the correlation matrix, where the mean of the images is first subtracted. While, in linear 
subspace analysis, we work directly on the original data (Belhumeur et al. 1997; Basri and Jacobs 1999; 
Basri and Jacobs 2003), without subtracting their mean. Recently, some theoretical analysis (Basri and 
Jacobs 1999; Ramamoorthi and Hanrahan 2001; Ramamoorthi 2002; Basri and Jacobs 2003) and 
experimental result (Belhumeur et al. 1997) have proved that better performance can be obtained directly by 
using the linear subspace analysis, without subtracting the mean. In section 5, we will analyse the 
performance of the linear subspace analysis, without subtracting the mean, as in (Ramamoorthi and 
Hanrahan 2001). 
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In order to tackle this issue, PCA has been utilized to model the lighting variation 

in images; because it has been proved, experimentally (Hallinan 1994; Murase and Nayar 

1994; Nene et al. 1994; Eipstein et al. 1995; Murase and Nayar 1995; Yuille et al. 1999) 

and theoretically (Basri and Jacobs 1999; Ramamoorthi and Hanrahan 2001; 

Ramamoorthi 2002; Basri and Jacobs 2003), that the possible images of the same 

Lambertian object, under different lighting conditions, approximately concentrate in a 

low-dimensional subspace.  

Similar approaches can be used in general object recognition and pose 

determination systems. A particularly influential example of such was the SLAM system 

(Murase and Nayar 1994; Nene et al. 1994; Murase and Nayar 1995), which captured the 

variations due to pose and illumination by a 20-dimensional (or less) subspace.  Recently, 

it was proved, by using spherical harmonics, that “all Lambertian reflectance functions 

obtained with arbitrary distant sources lie in close to a 9D linear subspace”: Basri and 

Jacobs (Basri and Jacobs 1999; Basri and Jacobs 2003) and Ramamoorthi and Hanrahan 

(Ramamoorthi and Hanrahan 2001; Ramamoorthi 2002). 

Our noise SVD analysis can be applied to PCA based face recognition in both the 

training/learning phase and in the testing/retrieval phase. Existing publications (Chen and 

Suter 2004b; Chen and Suter 2004c) have already used the theory presented here to make 

some improvement to Face Recognition approaches (however, those publications 

concentrate on other aspects of subspace based face recognition, such as shadow and 

other outlier removal issues, and did not provide the theoretical analysis contained in this 

paper). 
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Other Low Rank Constrained Computer Vision Problems 
Rank constraints can be applied to many other problems, for example in relation to 

fundamental matrix and trifocal tensors (Ma et al. 2004). We have chosen to concentrate, 

here, on the above three sets of problems, partly for focus and brevity, but also to avoid 

detailed consideration of issues such as heteroscedastic noise, which would complicate 

the analysis. 

1.2. Low Rank Constraint and SVD 
In the presence of noise, the matrix in question becomes full rank. Thus, the 

matrix has to be fitted to its closest low-rank approximation. The SVD gives the best 

solution to this problem (Golub and Loan 1996), measured by the Frobenius norm and 2-

norm. The result is guaranteed to be optimal (Press et al. 1992) if the noise is i.i.d. 

Gaussian. Not surprisingly, therefore, the SVD has become a widely used tool. For 

example, the factorization method (Tomasi and Kanade 1992; Poelman and Kanade 1997) 

achieves a Maximum Likelihood affine reconstruction from multiple (>2) views, as 

pointed out in (Hartley and Zisserman 2000).  

From a related point of view, the low-rank approximation can be regarded as a 

“denoising” tool, where we refer to the measure of the sum of squared difference (SSD)* 

between the noise-corrupted matrix (or the “denoised” matrix) and the noise-free matrix. 

Compared with a noisy matrix that is always of full rank, its low-rank approximation 

matrix, obtained by SVD, is always closer to the noise-free matrix, i.e. the underlying 

ground truth. For example, the multiview subspace constraint was utilized to improve the 
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accuracy of estimated homographies, especially for those that have small regions (Zelnik-

Manor and Irani 1999; Zelnik-Manor and Irani 2002).  

Thus, linear subspace approximation is sometimes a model simplification and 

sometimes a denoising process (and often both, simultaneously). 

Despite the well-deserved popularity of the SVD, little attention has been placed 

on carefully analyzing the performance of the SVD-based projections. A form of 

sensitivity analysis can be performed through studying the Jacobian of the SVD (Mathai 

1997). Indeed, (Papadopoulo and Lourakis 2000) used such an approach in the estimation 

of the Epipolar uncertainty and the estimation of the covariance of rigid 3D motion.  

However, in this section we pose questions that are best tackled through a 

statistical perturbation analysis. 

 

Denoising capacity of SVD 
It is well known (Golub and Loan 1996) that one can, by SVD, obtain the best 

solution to the low-rank approximation, measured by 2-norm or Frobenius-norm. 

However, we do not know its capacity of separating the signal from the noise. Supposing 

the noise level is small enough, how much signal is retained by keeping the largest r 

components? Or, how much noise has been reduced by discarding the other components? 

In this sense, we are blindly using a SVD, without knowing its denoising capacity: How 

close is the low-rank approximation matrix to the noise-free matrix, or how close is the 

SVD-based subspace to the ground-truth subspace?  

The lack of such performance analysis impedes the careful design of optimal 

systems. A natural issue arising is to characterize the achieved accuracy with the growth 
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in data (in the SFM context, this can be either through a growth in the number of frames 

analyzed, or by a growth in the number of features tracked). In the factorization approach 

to SFM, it is widely accepted that more frames produce more accurate result than a few 

frames ("few" typically being little more than 3). It was even claimed  that the 3D scene 

could be reconstructed to arbitrary accuracy given enough frames (Thomas and Oliensis 

1999).  

However, what is the gain of adding the data from one extra frame to a very large 

measurement matrix? What happens as the number of the frames approaches infinity? 

Can the 3D scene be truly reconstructed with arbitrary accuracy? Can such arbitrary 

accuracy be achieved only by the increase of the frames (while the number features do not 

increase)? Is an increase in the number of frames the most efficient way to obtain an 

increase in accuracy?  

In the example of SFM, as suggested above we can also possibly augment the 

number of feature points, or we can augment the number frames, or we can do both: i.e., 

both the row and the column of the matrix can grow towards the infinite in size. However, 

in a related problem, the induced homography matrix is restricted to a class of m×9 

matrices (Shashua and Avidan 1996; Zelnik-Manor and Irani 1999; Zelnik-Manor and 

Irani 2002). Such a matrix can only "grow" in one dimension, not both. We introduce 

some terminology to describe this difference: We call the matrix potentially-double-

infinite if it has infinite rows and columns, and potentially-single-infinite for those who 

has constant rows (columns) and infinite columns (rows). This raises another question: 

What is the difference between these two types of matrices in terms of the precision that 

can be achieved?  
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In summary, the first aim of this paper is to analyze the denoising capacity of 

SVD, i.e., to identify the error that still resides in the low-rank approximation matrix and 

how this error relates to the growth of additional data. 

 

Learning capacity of linear subspace analysis 
Questions, different from those posed above, arise from the face recognition and 

similar applications (including the object recognition and pose determination, and related 

applications). In the PCA-based face recognition approach, the eigenimage representation 

relies on a compact approximation of the large image database (or "learning" set), by 

spanning this set (approximately) with a few orthogonal basis images.  

In this paper, we consider the data (images) as being column vectors so that the 

learning phase involves trying to model the class of faces by a learned column space. In 

more detail, we adopt the simple description of the LSA-based face recognition algorithm 

in (Belhumeur et al. 1997; Georghiades et al. 1998; Georghiades et al. 2001). It consists 

of two steps: the off-line learning stage and the on-line recognition stage. In the learning 

stage, the image basis is obtained in this way: a set of learning images for one face is 

arranged as a learning matrix A so that each image is regarded as one column of the 

learning matrix A. Suppose the face image has a dimension of m, and n learning samples 

are collected. nmR ,∈A . The r (r<<m and nr ≤ ) basis images can be obtained as the first 

r left singular vectors of A, which correspond to the r largest singular values. In the on-

line recognition stage, a test image is projected on the r basis images and its distance to 

the image basis is used for recognition. Note, that in the cones-based approaches 
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(Georghiades et al. 1998; Georghiades et al. 2001) and in the Fisherfaces approach 

(Belhumeur et al. 1997),the learning set is a set of images of different persons. 

Of course, if the space of images of a face was exactly an r-dimensional linear 

subspace then only r linearly independent images of a person would be required to 

completely and accurately capture that subspace. However, such a view is overly 

optimistic. For example, although the “illumination cone” (Belhumeur and Kriegman 

1998) (see also (Zhao and Yang 1999)) can be obtained by as little as three images, the 

result is usually not accurate enough. First, there is inevitably some noise in the images, 

like quantization error. Second, it is difficult to satisfy the conditions in proposition 3 in 

that paper (Belhumeur and Kriegman 1998). Even if we can have three distinct light 

sources that can shed light on all the points of the surface, we can’t, in practice, exclude 

other light sources that cause attached or cast shadows on the subject. These 

considerations, plus general noise, have generally resulting in researchers trying to "learn" 

the eigenimages by a data reduction step applied to many "learning samples".  

In such a setting, we pose and then attempt to answer, several questions: What is 

the relationship between the learning capacity and the size of the learning samples? 

Note that the test image itself contains noise. Thus the noise in the LSA-based 

recognition system comes from two sources: one from the basis and the other from the test 

image. Do these two types of noise interfere with each other?  

In summary, the second aim of this paper is to present some theoretical analysis of 

the learning capacity of LSA-based recognition systems. Specifically, the error (measured 

by the sum of squared differences – SSD) of the LSA-based recognition system can be 

separated into two parts: one from the basis and the other from the test image, and we 
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obtain some analytical results about their effects on the performance of the recognition 

system. We show that it is possible, theoretically, to design the optimal recognition 

system if we know the expectation of the test images.  

1.3. Paper Outline 
In this paper, we answer the above questions by analyzing the performance of 

SVD in a noise-corrupted environment using matrix perturbation theory as a major tool. 

In section 2, we first present our results, concerning the denoising capacity of a large low 

rank matrix and the learning capacity of the LSA system. (In appendix A.1, some 

preliminary knowledge concerning the SVD and matrix perturbation theory is 

summarized. In appendices A.2 and A.3, we deduce our results, by employing matrix 

perturbation theory as the major tool.) In section 3, some simulation results are presented 

to testify to the correctness of the denoising capacity. Likewise, in section 4, we present 

some simulations illustrating our results on the performance of the LSA-based recognition 

system. In section 5, using the theories in this paper, we re-examine some phenomena, 

observed by other researchers. 
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2. Major results 
In this section we state our major results. Sections 3 and 4 outline the justification 

and discuss the importance of these results. The proofs are deferred to the appendices.  

  

Result 1 (Denoising capacity of SVD): Suppose a matrix nmR ,∈A  lies in a low-

dimensional, r, subspace. It is corrupted by i.i.d. Gaussian noise producing another matrix 

B, which is directly observed. Then, the error that still resides in the rank-r approximation 

matrix, B , is r

 
mn

rnmrabE ji
r

ji

2

,,
)(|| −+

=− σ  (1) 

if the noise level σ , compared with the signal level, is small enough. Specially, as 

, the rank-r approximation of B approaches A, i.e. B ; and if n∞→nm, A→r k≡  

( ) and , rk ≥ ∞→m

 
k
rabE ji

r
ji σ→− || ,,   (2) 

Formulas (1) and (2) characterize the denoising capacity of the SVD, in terms of 

the noise level, the sizes of the measurement matrix and the rank. This result, without 

proof, was used in (Chen and Suter 2004a) to design a heuristic for SFM.  

The proof of this result can be found in appendix A.2. A sketch of the ideas behind 

the proof is as follows. Standard perturbation results (see Theorems 1 and 2 in the 

appendix A.1.3) state that for small noise perturbations, the singular values are themselves 

perturbed by small noise terms. However, the same theorems state that the singular 

vectors are perturbed by an amount that depends upon the closeness of the singular values 
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- potentially a very large perturbation if the singular values are close to each other. 

However, we show that this result does not destroy the structure of the solution as the 

large potential perturbations, in the case of nearly equal singular values, merely 

correspond to possible permutations of the basis vectors of the space spanned by the 

singular vectors of these singular values. This allows us to derive the following 

expression for the discrepancy between the rank-r approximation of the noisy data and the 

clean data (see appendix A.2): 

22||||
FF

r EE YAB =−  

where                                                     (3) 
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and the non-zero c  are comparable in size (have the same expectation) as the entries in 

the original noise perturbation. The formula above holds to first order approximation. 

This means that the noise in the approximation has reduced degrees of freedom (due to 

the zero block in Y) and the noise can be estimated as: 

ij

 222
,
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Actually, there are second and higher order terms in the zero-block of Y: they are 

not exactly zeroes. However, as the noise level is much less than the signal level; these 
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terms are much smaller compared with the terms denoted by c  in the above formula. 

We can support to this conclusion by the following simple example in Matlab. Suppose 

ji,

10,10R∈A

10,10R∈C

AB +=

AB −3

 is a signal matrix, with all zero entries except a . 

 is a noise matrix, generated as randn(10) in Matlab. The observed signal matrix 

is . The matrix in table 1 is a typical example of the approximation error, 

, between A and the rank 3 approximation of B, . Please note the zero-block in 

Y (highlighted) is much smaller that other entries, although they are not exactly zeroes. 

1003,32,21,1 === aa

C

3B

Table 1: A typical example of the approximation error, B A−3 . 

1.188 1.1857 -0.1289 -0.823 0.337 0.1243 -0.4911 -1.0207 0.467 -1.5508 

2.2023 1.0554 -0.6569 -0.2284 0.8511 0.0955 0.8644 1.5689 -0.3891 -0.6872 

-0.9865 -1.4727 1.1689 1.0365 -0.5205 -0.5185 -0.0025 0.063 -0.714 -1.9757 

0.5235 -0.0745 0.4441 -0.0005 0.0012 0.0018 0.0032 0.0062 0.0005 0.0165 

-0.3597 1.1914 0.2415 -0.0025 -0.0078 0.0005 -0.012 -0.0224 0.0079 0.0076 

-0.2397 0.0212 1.2484 -0.0152 0.0074 0.0069 -0.0012 -0.0034 0.0102 0.021 

-0.0112 1.1295 1.3475 -0.0115 -0.0025 0.006 -0.0097 -0.0184 0.014 0.0345 

1.0295 1.3365 -0.9429 0.0221 -0.0204 -0.0077 -0.0066 -0.01 -0.0066 0.0072 

0.9273 0.255 -0.0308 0.0087 -0.0057 -0.0016 0.0023 0.0054 -0.0036 0.0158 

0.3838 -0.9499 0.677 -0.0064 0.0106 0.0041 0.0101 0.0184 -0.0005 0.0126 

 

Further examples, supporting the theory, can be found in the following section 3. 

 

Result 2 (Learning capacity of LSA): For a rank-r LSA-based recognition system, the 

"error measure" (the SSD) comes from two independent sources: the noise in the basis 

images and the noise in the test image. That is, because no data is free of measurement 

errors, the learning phase will not learn the “true” or ideal subspace. Moreover, the test 
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data will also contain noise – so a given test image will not lie in the learned subspace as 

both the test image itself, and the learned subspace, are perturbed by noise. Formally, 

suppose n m–dimensional images are presented as learning samples, and they are arranged 

as the matrix A, nmR ,∈A

rn, UUT

. Suppose, further, the noise-free image columns are restricted 

to a dimension r subspace. According to SVD decomposition, A , where 

, V , ,  and 

TUSV=

rmR ,∈U R∈ I= IVV =T },,{ 1 rdiag λλ L=S .  Because of the noise 

in the learning samples, a perturbed r-dimension subspace  is obtained, rather than U. 

The test image, q, q  is also corrupted with noise, observing p.  

rU′

], rf,1 L[ fU=

Then, the projection error of the noisy test image, p, upon the perturbed subspace , is: rU′

 ∑
=

−+−≅′′−
r

i i

i
lt

F

Trr frmrm
1

2

2
22

2
)()(

λ
σσpUUp  (6) 

where tσ  and lσ  are the noise levels of the test image and the learning samples 

respectively. 

Specifically, if q is taken from the learning samples, i.e., q is one of the columns of A, 

with uniform probability of selecting the column number, the expectation of the SSD in 

(6), is: 

 n
rrmrm l

t

2
2 )()( σσ −+−  (7) 

Conversely, if the expectation of the test image q is known, i.e., {  is known, 

the optimal learning set have the following property: 

},,1| rif i L=

 Consf

i

i ≡2λ
 (8) 
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Moreover, for a random test image, (7) is optimal among the size-n learning sets (we 

cannot obtain lower error than this on average); and the size-n learning set is optimal iff it 

has r equal singular values. Here, the randomness of a test image means that ji ff =  

because we do not have any knowledge about the test image. Note that the derivation of 

(6), (7) and (8) is arranged in appendices A.3.2, A.3.3 and A.3.4, respectively. 

Formula (7) explicitly computes the reconstruction error when approximating a 

vector by the linear combination of the basis vectors obtained by SVD. It tells how to 

effectively control the approximation error. For example, we intuitively know that we can 

reduce the reconstruction error by reducing the noise levels in the test image and learning 

samples, however, it is not clear how these two noise sources affect the overall error. 

According to formula (7), these two sources of noise have different effects on the 

reconstruction error: the effect of the noise in the learning samples can be controlled by 

the size of the learning samples, while the noise in the test image works, independent of 

the learning process. Result (7) was used, without proof, in (Chen and Suter 2004b; Chen 

and Suter 2004c) to design improvements to PCA based face recognition systems. 
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3. Denoising capacity of SVD 
From result 1, we can now draw a significant conclusion: As m , while k is a 

constant, 

∞→

k
rABE ji

r
ji σ→− || ,, , a non-zero constant. In contrast, if both ∞→m  and 

, the theory shows that it is possible to continue decreasing the noise in the data all 

the way down to zero. 

∞→n

One of the consequences, in the context of SFM is that it is impossible to 

reconstruct a 3D scene to arbitrary accuracy by the factorization method (using an 

affine camera model), by increasing the number of the frames (while keeping the 

number of the feature points unchanged). Indeed, using our theory we can actually put a 

lower bound on the noise remaining in such a situation (see the simulations late in this 

section).  

This consequence contrasts with the claim that 3D scene could be reconstructed to 

arbitrary accuracy given enough frames (Thomas and Oliensis 1999). However, we 

recognize the need for caution - our setting is not exactly the same as that of (Thomas and 

Oliensis 1999), where the perspective model was adopted. Perspective factorization 

approaches are not simple to characterize/analyze and are beyond the scope of this paper. 

Another similar consequence follows in formulations of rank constrained 

homography estimation where one dimension is inherently fixed to be 9. There is a limit 

to the denoising capacity in such a situation and, again, we can quantify this lower bound. 

We note that it is very difficult to have real data with high precision ground truth. 

Thus, in this section, we present some simulations to verify result 1 of section 2. 
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In this experiment we work with a set of rank-3 matrices. For square matrices, the 

size of the matrices increases from 3 to 200; while for rectangular matrices, the number of 

the columns remains unchanged, staying at 40. The noise level is 0.1. Figure 1 shows the 

simulation results of SVD’s denoising performance, compared with the expectation from 

result 1. It can be easily observed that the expected curve almost coincides with the 

simulation result. The curves of the simulation result and the expectation from (1) are so 

close that it is even difficult to separate them in Figure 1. Their closeness to each other 

confirms the theory about the denoising capacity of the SVD. In contrast with Figure 1 (d-

f) (rectangular matrices), the curves in Figure 1 (a-c) (square matrices) can be observed to 

continue towards zero error, while the error for the rectangular matrices changes little 

after the number of the rows increases to 20 or 40.  
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Figure 1: The average error that still resides in the rank-projected matrix. The abscissa denotes the number of the rows 
of the matrices, and the error is on the ordinate. (a-c) are for the square matrices, and (d-f) are for the rectangular 
matrices (fixed 40 columns). There are three curves in every sub-figure: the (approximately) straight curve in the upper 
part denotes the original noise in the noise corrupted matrix, and the smooth/non-smooth curves are the 
expectation/actual error in the approximation matrix respectively. In (a) and (d), the signal and the noise are randomly 
generated. In (b) and (e), the noise levels are normalized, so that the average energy in each entry of the matrices is 0.01. 
In (c) and (f), the signal matrices have 3 equal singular values. 
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3.1. Application in refining homography estimation 
In (Chen and Suter 2004a), we extended the denoising capacity of a complete 

matrix to an incomplete matrix with missing data. By this, we provided a method to 

recover the most reliable imputation, in terms of deciding when the inclusion of extra 

rows or columns, containing significant numbers of missing entries, is likely to lead to 

poor recovery of the missing parts. In this section, we apply the theory of denoising 

capacity of a large low-rank matrix to refine the estimated homographies over two views. 

For background on projective geometry and homographies we refer the reader to the 

textbook (Hartley and Zisserman 2000). 

Rank-4 constraint of the induced homographies 
In (Shashua and Avidan 1996), it has been proved that the induced homography 

matrix over two views is embedded in a 4-dimensional subspace. Suppose that n ( n ) 

planes are observed over two views. For the i

4≥

i
th plane, there exists a homography H : 

, which projects the points of the first view upon the second view. 

The homography H  can be estimated from ≥  points (Hartley and Zisserman 2000). 

We arrange the induced vector  as the i
















=

iii

iii

iii

i

hhh
hhh
hhh

,9,8,7

,6,5,4

,3,2,1

H

i

4)( =Hrank

4

h, ,9L T
iiii hh ],,[ ,2,1=h th column of H. The fact that 

, as is one of the major results in (Shashua and Avidan 1996). Figure 2 

shows such an example, where the induced noise-free collection of homographies H 

exactly has a rank of 4 (shown as the dashed curve). In practical circumstances, the 

homography will be estimated from noisy points and the collection of such homographies 

quickly becomes full-rank, as shown by the solid curve. 

 

 

20

MECSE-9-2005: "An Analysis of Linear Subspace Approaches for Computer Vision ...", P. Chen and D. Suter



1 2 3 4 5 6 7 8 9
10

-20

10
-15

10
-10

10
-5

10
0

10
5

Index of the 9 singular values  
Figure 2: Rank-4 constraint for the induced matrix of from multiple-plane-over-two-view homographies. 
The dashed curve denotes for the 9 singular values of a noise-free homography matrix; and the solid for the 
same set of homographies with added noise. 

 
The matrix H has a constant width of 9 (Shashua and Avidan 1996). According to 

the denoising capacity (2), if there are enough planes observed, the estimated 

homographies can be refined by the rank-4 constraint: In the limiting case, the error in the 

homographies can be reduced from σ  to 
9
4σ , where σ  is the error level in estimated 

homographies.  

Note that the error in the estimated homography usually loses the i.i.d. 

Gaussianality. Worse, the homography estimation suffers from a well-known 

heteroscedastic noise problem (Leedan and Meer 1999; Leedan and Meer 2000): The 

heteroscedastic noise arises due to the linearization in the direct linear transformation 

(DLT) algorithm (Hartley and Zisserman 2000).  

As pointed out in appendix A.2, in deducing formula (3), we do not impose the 

i.i.d. Gaussianality upon the noise in the observed matrix. This means that the zero-block 
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of -Y in (3) holds for any type of noise, if and only if the noise level is small enough 

compared with the signal level. In the following, we apply the rank-4 constraint to refine 

the estimated homographies.  

Since we need to quantitatively assess our results in this setting, we resort to 

simulations (rather than using real data), where we know the ground truth for the 

convenience of performance evaluation. 

Experimental settings 
The first camera: We assume its center is placed at the coordinate origin and the 

x and y axes of its image plane coincide with the x and y axes of the coordinate system. 

The image plane is assumed to be placed between the camera center and the objects. 

Without loss of generality, its focal length is assumed f, which will be determined in the 

normalization. Assuming a pinhole model, the projection matrix of the first camera is 

.  ]),1,([ 21 0P fIdiag=

The second camera is randomly placed in a cube of size 2, and it rotates around z 

axis by a random angle.  

The planes are determined in the following way: Each of them passes a point on z 

axis: (0, 0, p), where p is a random value in [35, 45]. The angles between z axis and the 

planes are 70~90 degrees. The points in the planes are randomly restricted to [-10:10, -

10:10, ?], where the question symbol “?” means that the z-coordinate is determined by the 

plane, and the x and y coordinates. 

Consideration of the projection error and normalization: If we only need to 

testify to the correctness of formula (2), the focal length of f can be arbitrarily set to 1. 

Here, we want to show that the refined homographies, improved by imposing the rank-4 
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constraint, have better performance, measured by the projection error between the noise-

free feature points in the second view and the corresponding projections from the first 

view.  

Note, the coefficients of the homography H , projecting (x, y) of the first view 

upon the second view (  involves parameters both in a numerator and in a 

denominator: 

i

), yx ′′
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,5 . The worst case noise 

amplification is likely to occur when a small error in {  leads to a 

comparatively large error in the projection of 

},, ,9,8,7 iii hhh

′  or y′ . Thus, we set f (the focal lengths 

of the cameras) so that the average distance of all the points in all planes is 2 , which is 

a normalization process not dissimilar to what is traditionally done in the linear approach 

to fundamental matrix estimation.. 

Experimental results 
First, we study the denoising capacity of the rank-4 homography matrix, and make 

comparisons with formula (1). We use 20 points for each plane. By the SVD (Golub and 

Loan 1996), we calculate the rank-4 approximation of H, whose ith column, h , is the 

induced homography vector for the i

i

th plane. Suppose the underlying ground truth of H is 

H~ , which is available in the simulation. What interests us is the ratio of r: 

 
F

Fr
||~||
||~|| 4

HH
HH
−
−

=  (9) 

which reflects the denoising capacity of a large low-rank matrix. In order to make the 

comparison meaningful, we normalize each column of H, i.e., ||  and make  1||=ih ih ,1
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positive (if , we make another coefficient positive). The same procedure is applied 

to 

0,1 =ih

H~  and . However, improvement in estimating the coefficients of a homography is 

perhaps not as directly observable as the error in the projections defined by the 

homography. For this reason we also report the average error in the projections of 

randomly chosen positions in the first image, when projected by the homographies into 

the second image. More specifically, we compare two errors e and e

4H

′ : e is the projection 

error of the projection using the collection of homographies in H, and e  is produced by 

the refined homographies in H . Here, we also use ratio of 

′

4

e
e′  to evaluate whether the 

refined homography improves the projection. 

The solid/dotted curves in Figure 3 show the simulation result of r and 
e
e′ , 

respectively. Note, in Figure 3, each experiment is repeated 100 times, then the root of the 

mean square is computed as the final r or 
e
e′ . Figure 4 shows the histogram of r and 

e
e′  

for the case with 100 planes (of course, such a case is perhaps unrealistic in practice as 

there are unlikely to be so many planes of significant size in any two views). The 

experiment is repeated 1000 times to create the averages. Note, from (1), r should be 

0.6831; while the root of the mean square, in Figure 4 , is 0.6677, in good agreement with 

the prediction. 

From Figure 3 and Figure 4, the rank-4 constraint can improve the accuracy of the 

estimated homographies, as measured by the coefficients in the homography and this also 

leads to a reduction in the projection error (although not by the same sort of margin as can 

be seen from the histogram in Figure 4.) 
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Figure 3: The simulation of the improvements of the homography coefficients and the projection accuracy, 
as the number of planes increases. 
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Figure 4: The histograms of r and the improvement of the projection error when there are 100 planes. The 
experiment was repeated 1000 times to calculate the averages.  
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4. Simulation of the learning capacity for LSA-based recognition  
In this section, we present some simulation results illustrating our results on 

performance of the LSA-based recognition system, as stated in section 2.  

In this example, the parameters in (7) are set as follows: m=100 (size of the 

“images”), r=3 (dimension of the linear subspace spanning the learning set, before noise 

was added to the learning set), 100=sσ  (signal strength – average sum of squares of the 

components of the “images” – both learning and testing), and 1== tl σσ  (noise variance 

added to the learning images and the test images, respectively). In more detail, to generate 

the learning set we simply generated a number of image vectors (of length 100) that are 

restricted to a dimension-3 subspace, and scaled so their norm is 100. Noise was then 

added to these vectors to form the learning vectors. 

For testing images/vectors we used two sets. The first set was essentially the 

original learning set (taking the noise-free learning vectors but adding different noise 

samples, with the same variance as the learning set, to these vectors). The second set  was 

obtained in a similar fashion (generating random vectors in the same rank-3 subspace) but 

prior to adding the noise we equalized the 3 singular values of this test set.  

As expected by our theory, as the learning sample size approaches infinite, the 

SSD on these two sets approaches a limiting (non-zero) value, as shown in Figure 5-a. On 

the test set that is just the learning set (with different noise samples), the performance 

(solid curve) almost coincides with the expectation from the theory (dashed curve). 

Because the 3 singular values of the second test set have been artificially equalized, the 

best performance on this set can be obtained only if the learning set has 3 equal singular 

values, from (8). However, the learning set always has 3 distinct singular values. Thus, 
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the performance on the random test set is worse than the optimal curve (dashed curve), 

especially for the small-size learning samples. (In fact, the performance for the 

recognition system is very bad, at 5,771.6, 788.1 and 588.1 respectively, when the 

learning sample sizes are only 3, 4 and 5. In order to make the curves clear, these points 

have been omitted in Figure 5-a.) 

In the next series of experiments we create a single random test set and investigate 

the performance of different learning sets (different basis images): an optimal learning set 

(complying with (8)) and a random learning set (with 3 equal singular values). The 

performance of the random learning set, denoted by the solid curve, can be expected to 

coincide with the expectation (7), denoted by the dashed curve, as shown in Figure 5-b. 

From Figure 5-b, the optimal learning set has a better performance than the random 

learning set, especially for small learning sizes. Note, if the learning set is truly randomly 

generated, it probably has a very bad SSD performance, especially for a small-size 

learning set. For example, the rth basis image is comparatively dirty, because the rth 

singular value of the learning set is comparatively small; while most of the energy of the 

test image comes from this basis image. In such cases, the error from the basis images, 

especially from the rth basis image, will dominate the total error, as can be seen from (6). 

In Figure 6, we show the effects of the three parameters in (7), the size of the 

learning samples (n), the noise level in the learning set ( lσ ), and the noise level in the test 

set ( tσ ). In this example, the recognition system works on the learning samples. Figure 6 

(a) shows the performance of SSD when tσ  is 0.5. It can be easily observed: the square 

dependency on lσ  in the small-size learning sets and the decreasing effects of lσ  as the 
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learning size increases. Figure 6 (b) shows the performance of SSD when lσ  is 0.5. We 

can observe the square dependency on tσ  and also that this effect is almost independent 

of the learning size. Figure 6 (c) and (d) show the effects of lσ  and tσ  when the learning 

sizes are 3 and 125 respectively. When the learning size is 3, lσ  has almost a same effect 

on SSD as tσ . When the learning size is 125 (>>3), the noise in learning set can be 

almost neglected if it is not much stronger than the noise in the test set. This result readily 

follows from equation (7). 
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Figure 5, The dependency of SSD on the size of learning samples. (a) for a single learning set, tested with  two test 
sets: (solid) the learning set from which the basis images are obtained (both with different samples of noise to the 
actual learning set), and (dotted) another set from the same subspace as the learning set but one  that has 3 equal 
singular values (and, again, different noise samples); (b) for a single test set, tested by two learning sets: (dotted) the 
optimal learning set and (solid) another learning set that has 3 equal singular values. In both subfigures, the dashed 
curves denote the expectation from (7). 
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Figure 6: The effects of the three parameters in ( ) on SSD. For details,  see the description in the text. 7
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5. A re-examination of some existing results 
In this paper, we have presented and proved theorems regarding the noise related 

behavior of SVD important classes of problems. We have supported the theorems with 

simulations. However, we can do more than this. We can re-examine some of the existing 

results, reported in the literature, in the light of the new results. For example, in SFM, the 

root-mean-square error of the recovered shape with respect to the true shape was reported 

in (Morita and Kanade 1997). Fig. 6 in that paper shows that the error approaches a 

constant value after the number of the frames increases to 20 or 40, and the observation is 

of the same form as the results we reported here. 

In terms of LSA, we examine the results in (Basri and Jacobs 2003). There it was 

reported that no significant deterioration of the performance was found for LSA-based 

face recognition, if the images were subsampled by 16×16 squares. This subsampling 

results in a decrease, of the row number of A (in our terminology), by 1/256. However, 

the reduced row number is still very large, about 1000 (>>4 or 9). From (80): the 

performance, measured by the angle between the test image and the basis images, is 

almost independent of m if m>>r, which in essence predicts the observation in (Basri and 

Jacobs 2003). 

The last example (maybe even the most important), we give, relates to the 

observation that “recognition of an object under a particular lighting and pose can be 

performed reliably provided the object has been previously seen under similar 

circumstances” (Georghiades et al. 2001). An explanation can be found from (6) and (8). 

For a test image, if it or similar cases have been observed in the learning samples, its 

 will tend to have a monotonic relationship with { , i.e., for a larger ,  is }{ 2
if }2

iλ
2
iλ

2
if
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also larger, and vice versa. More formally, if (8) holds, the recognition system has the 

optimal performance. However, a test image may be produced under very different 

lighting conditions from those in the learning set. In such situations, it is quite possible 

that much of the energy of the test image concentrates in one or more of the dimensions, 

associated with small singular values, i.e., the dimensions that are most easily perturbed 

by noise. From (6), the recognition error would then be very large. This not only explains 

the drawback of PCA-based face recognition, pointed out in (Georghiades et al. 2001), 

but also gives a possible solution, as suggested by (8). For a random test set, the best 

learning samples should be selected this way: to equalize the first r largest singular values 

as possible. However, we do not present any specific strategies for this open, and perhaps 

promising, issue. 

Finally, we note that (Chen and Suter 2004b; Chen and Suter 2004c) and in (Chen 

and Suter 2004a) provide further examples of the utility of subspace noise analysis: 

addressing SFM and Face Recognition respectively. In those papers, considerable space 

and detail was devoted to particular problems that need addressing (e.g. “missing data” in 

SFM and outliers in Face Recognition) in a more complete solution to particular computer 

vision problems. However, the fundamental issue behind the success of those methods 

was the careful exploitation of our subspace noise analysis. 
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6. Conclusion 
The main contribution of this paper is to present a theoretical analysis of SVD-

based low rank projections: the denoising capacity of SVD (where we characterized the 

error that still resides in the SVD-denoised matrix) and the learning capacity of LSA-

based recognition systems (where we showed that the projection error can be decomposed 

into two independent sources, one from the test image and the other from the basis 

image). In doing so, a minor contribution is that we fill an apparent gap in the literature: 

the perturbation theory concerning multiple eigenvalues (singular values). 

The theory was supported by a number of experiments presented in this paper, as 

well as a number of observations that interpreted the results from previous papers in the 

light of this theory. Though we concentrated here on a few settings: refinement of the 

estimation of a group of related homographies, SFM, and face recognition, the theory is 

quite general and could well find more applications in computer vision and pattern 

recognition tasks. 
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Appendix A.1: Preliminary knowledge: SVD and perturbation 

theory 
A.1.1 Notation 
In the following, a matrix will be denoted by a bold capital letter, like M, and a bold 

lowercase letter represents a vector, e.g. x. The ith column of M is denoted by m . A 

scalar entry in a vector or in a matrix will respectively be denoted by, for example, x  or 

. In some cases, we use [  to specify the sizes of M for clarity, i.e., 

i

1

2,1m nm,]M nmR ,∈M . 

, a notation from Matlab, denotes for the submatrix of M: the intersection of the i-

to-j rows and the k-to-l columns. I  denotes the 

lk:,ji:M

n nn×  identity matrix, and 0  for a 

 zero-matrix. e  is the i

nm,

nm× i
th column of I .   A matrix U, , is said to have 

orthonormal columns, iff . The set of such m

n
nmR ,∈U

nIU =TU n×  matrices, which are always 

represented by U or V, is denoted by O . A square matrix U is orthogonal iff . 

Two matrices, M and N, with same sizes, are said to be orthonormal to each other iff 

, || , and . The Frobenius norm of a matrix M (or a vector) 

will be denoted as 

nm,

0

mU mO∈ ,

1=||F|| M 1|| =FN ,, jiji nm =∑

F
M , where ∑

ji
m

,
= ji

2
,F

M .  denotes the closest rank-r 

approximation of 

rM

nmR ,

r

∈M , where r≤min(m,n), as will be explained in appendix A.1.2. 

Similarly, the entry in M  is denoted by . The symbol “≈” means the first order 

perturbation, explained in appendix A.1.3. And, “≅” means the equality, in the sense of 

statistical expectation. 

r
im , j
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A.1.2 Singular value decomposition 
The principle behind the SVD (Golub and Loan 1996) states that any matrix, 

nmR ,∈M , can be decomposed into 

   (10) TVUM Σ=

where ,  and , with p  and mmO ,∈U

2 ≥≥ p

nnO ,∈V

0

nm
p Rdiag ,

21 ),,,( ∈= λλλ LΣ ),min( nm=

1 ≥≥ λλλ L . Without loss of generality, suppose m . {  are 

the eigenvalues of M , or the first n largest eigenvalues of MM . The first n left 

singular vectors of M are {

n≥ },,2,1|2 nii L=λ

TMT

},,2,1 nL| ii =u , where u  is the eigenvector, associated with 

the eigenvalue of , of MM . Similarly, the right singular vectors of M are 

, where v  is the eigenvector, associated with the eigenvalue of , of 

. Another important fact (Golub and Loan 1996) is that one can easily construct 

, the closest rank r approximation of M measured by 2-norm or Frobenius-norm, by: 

i

T2
iλ

i},,2,1 nL=|{ iiv

MMT

rM

2
iλ

   (11) ∑
=

=
r

i

T
iii

r

1

vuM λ

Specifically,  

 12 +=− r
r λMM   (12) 

 ∑
+=

=−
n

rj
jF

r

1

2λMM  (13) 

A.1.3 Perturbation theory 
Only the perturbation theory concerning singular values/vectors is needed in this 

paper. However, we also include the perturbation theory for the eigenvalues/eigenvectors 

as a useful way to arrive at our results. The proofs of theorems 1 and 3 help one 
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understand the proofs of theorems 2 and 4. To the best of our knowledge*, the 

perturbation expansion of the eigenvectors/singular-vectors is available only for those that 

correspond to a simple eigenvalue or singular value (Wilkinson 1965; Stewart and Sun 

1990). In this section, we review such theory, and in the next section, we present our new 

results for those that correspond to a multiple eigenvalue or singular value. In order to 

have a complete description of the perturbation theory, we give detailed proofs, including 

those available in the textbooks (Wilkinson 1965; Stewart and Sun 1990). Importantly, we 

provide a characterization of “message” conveyed by these theorems. 

Theorem 1 (Wilkinson 1965): Consider a symmetric matrix, mmR ,∈M . Suppose M has 

m distinct eigenvalues, { },,2,1| mii L=λ  and the associated eigenvectors are 

. Matrix M is perturbed by a matrix  so we observe ,  

and the eigenvalues and eigenvectors of A are {

},,2,1|{ mii L=u ∆M

,2,1

∆MMA +=

}, m| ii L=′λ  and {  

respectively. Assuming every entry in ∆  is small enough, the first-order perturbed

},,2,1| mii L=′u

M ** 

eigenvalues and eigenvectors are: 

 iiii c ,+=′ λλ   (14) 

 ∑
≠ −

+=′
ij

j
ji

ij
ii

c
uuu

λλ
,   (15) 

where C . ∆MUUT=

Proof:  

                                                 

* Here, we’d like to express our appreciation to Prof. G. W. Stewart [32], who, by private correspondence, 
pointed this out to us. 
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If M is corrupted with ∆  and M M∆  is small enough, the first-order perturbations of the 

eigenvalue and the eigenvector, denoted as λ∆  and u∆  respectively, will be small 

enough, from Ostrowski’s continuity theorem (Wilkinson 1965). Denote higher-order 

terms as δλ  and uδ , respectively. From 

)u)(u())(( uuuMMAu'i u δδλλλδ +∆++∆+=+∆+= +∆ , we have the first-order 

perturbation, by dropping the higher-order terms:  

 uuuuMuMuM ⋅∆+∆⋅+⋅≈⋅∆+∆⋅+⋅ λλλ  (16) 

We can write u  (since these vectors form a basis), and ∑
≠

∆+=′
ij

jijii f uu , iii λλλ ∆+=′ . 

Our task is to find an expression for ijf ,∆  and iλ∆ . From the first-order perturbation, we 

have ii
j

jiii uuMMu λλ ∆+≈+
i

jf∆iiuλ +i
ij

jijf ∆Muu +∆ ∑∑
≠

,
≠

, , and  

  (17) iii
ij

jijijf u∆Muu λλλ ∆=+−∆∑
≠

)(,

Because M is symmetric and has m distinct eigenvalues, {  are orthogonal to each 

other. Pre-multiplying (17) by u , we obtain ∆ . Pre-multiplying (17) by 

, we have 

}iu

iic ,=T
i i

T
ii = Nuuλ

T
ju

ji

ij
ij

c
f

λλ −
=∆ ,

, .                                                                                        □ 

 

Notice that the theorem essentially states that the eigenvalues are, to first order, perturbed 

by the diagonal elements of C (which is the “noise” transformed by the eigenvectors of 

the data). If the “noise’  has “no structure”, these disturbances will be small. Likewise, the 

eigenvectors are perturbed by a “mixing” with the other eigenvectors, with the important 
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message that the degree of mixing is controlled by the closeness of the respective 

eigenvalues, in addition to the size and structure of the “noise”. 

 

Theorem 2 (Stewart and Sun 1990): Suppose A (not necessarily symmetric) is corrupted 

with N and we observe B: NAB += . According to SVD, we have A , 

where , 

TVUΣ=

mmO ×∈U },,2 m,{ 1diag λλλ L=Σ , . Define C .  Suppose mmO ×∈V NVU T= iλ  is 

a simple non-zero singular value of A. Then, the perturbed singular value iλ′ , left 

singular vector u , and right singular vector i′ iv′ , of B are respectively  

 iiii c ,+=′ λλ   (18) 

 ∑
≠ −

+
+=′

ij
j

ji

jijiji
ii

cc
uuu 22

,,

λλ
λλ

  (19) 

 ∑
≠ −

+
+=′

ij
j

ji

jiiijj
ii

cc
vvv 22

,,

λλ
λλ

  (20) 

The following Lemma will not only provide most of the proof but it will also be 

independent use: 

Lemma 1 Define . Because Σ  is a diagonal matrix, {CΣD += }jλ  and  are 

respectively the singular values and the right/left singular vectors of . First, focusing on 

D, we prove its singular values, 

}{ je

Σ

iκ , right singular vectors x , and left singular vectors  

are respectively 

i iy

 iiii c ,+= λκ  (21) 

 ∑
≠ −

+
+=

ij
j

ji

jiiijj
ii

cc
eex 22

,,

λλ
λλ

 (22) 
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 ∑
≠ −

+
+=

ij
j

ji

jijiji
ii

cc
eey 22

,,

λλ
λλ

  (23) 

Proof of Lemma 1: Writing iii λλκ ∆+= , , and 

the task is to find expressions for 

∑
≠

∆+=
ij

jijii f eex ,

∑
≠

∆+=
ij

jijii g eey , ij ,f∆  , ijg ,∆ , and iλ∆  

From our definition of D, iκ , x and  we have  Dxi iy iii yκ=  and .  Equating 

their first-order terms, we have: 

iii
T xyD κ=

 ∑∑
≠≠

∆+∆+≈∆Σ++Σ
ij

jijiiiii
ij

jijii gf eeeeCee ,, λλλ   (24) 

 ∑∑
≠≠

∆+∆+≈∆Σ++Σ
ij

jijiiiii
ij

jij
T

i
T

i
T fg eeeeeCe ,, λλλ  (25) 

Then 

 ∑∑
≠≠

∆+∆=∆+
ij

jijiii
ij

jijji gf eeeCe ,, λλλ  (26) 

 ∑∑
≠≠

∆+∆=∆+
ij

jijiii
ij

jijji
T fg eeeeC ,, λλλ  (27) 

First, by equating the coefficients of e  in (26)-(27), we have i iii c ,=∆λ . Likewise, from 

the coefficients of  , je )( ij ≠

  (28) 




=∆+∆−
=∆−∆

jiijiijj

ijijjiji

cfg
cfg

,,,

,,,

λλ
λλ

The solution of the two-by-two system of equations in (28) is: 

   (29) 






−+=∆
−+=∆

)/()(
)/()(

22
,,,

22
,,,

jijiiijjij

jijijijiij

ccf
ccg

λλλλ
λλλλ

So far, the Lemma has been proved.  
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Proof of Theorem 2: Noting that we have: TTTV UDVUCVUΣNAB =+=+=

   (30) TT
mmm

T diag VxxyyUUDVB ],}[,,{],,[ 111 LLL κκ≈=

so that B has iκ , , and Uy  respectively as its singular values, right and left singular 

vectors. Thus, combining (30) with (21-23), we have proved the theorem.                 □ 

iVx i

The interpretation of this theorem is similar to that of theorem 1. The singular 

values are perturbed by an amount that will be small if the noise is small and “has no 

structure”. The perturbation of the singular vectors involves some form of mixing that 

will be small if the noise is small (and unstructured) and if the singular values are not very 

close to each other. 

The above perturbation theorem concerning the singular values/vectors, holds only 

for positive (and significantly large) singular values (Stewart and Sun 1990) (Note: 

singular values have to be non-negative.) In this paper, we are concerned with 

perturbations of subspaces associated with  the first r largest singular values, where r<<m. 

Thus, we do not have to consider the behavior of the perturbation for the zero (or near 

zero) singular values.  

Note that it is assumed that the noise level is much smaller than the signal level in 

this paper. Under this assumption, it is reasonable to assume that the perturbed singular 

values, { },,1| rii L=′λ  are still the r largest singular values of B. However, as the noise 

level increases, this assumption can be violated. In these cases, the perturbed zero singular 

value can take place of the perturbed smallest nonzero singular value. Such an example 

can be found in (Faugeras and Luong 2001). 
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A.1.4 New perturbation theory, associated with a multiple eigenvalue/ 
singular value 

In this section, we present our perturbation expansions, corresponding to the case 

where the matrix has at least one multiple eigenvalue/singular value.  

First, we want to shed some light on the perturbation expansions concerning 

singular vectors that correspond to a multiple singular value. We do this by considering 

the perturbation expansions of the eigenvectors of a symmetric square matrix:  

Theorem 3: Suppose mmR ,∈A , TAA = , and it has m eigenvalues { }iλ  and m 

eigenvalues , which are orthonormal to each other*. Without loss of generality, 

suppose the first r eigenvalues of A are same, 

}{ iu

λλ =i  for ri ,,2,1 L= . A is corrupted with 

N, which, compared with A, is small enough. B=A+N is observed. For the reason of 

simplicity, assume N is symmetric. Define C . Then, the first r perturbed 

eigenvalues and eigenvectors of B are: 

NUTU=

 ii δλλ +=′   (31) 

 ∑∑
+== −

′
+=′

m

rj
j

j

ij
r

j
jiji

c
u

1

,

1
,ˆ uuu

λλ
  (32) 

where  (supposing T
rrr diag UUC ˆ},,{ˆ

1:1,:1 δδ L= ji δδ ≠  if ji ≠ ). Define 

. The other m-r eigenvalues/eigenvectors can be obtained 

as in theorem 1. 














−− rmrm I
UC

I

ˆ




=′

TUC
ˆ
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To understand the significance of this theorem, it is useful to consider what 

happens as the eigenvalue/eigenvector structure approaches the situation where we have 

multiple equal eigenvalues and a subspace of eigenvectors, of dimension >1 for that 

eigenvector. Theorem 1 becomes not useful in such a situation since the eigenvector 

perturbation clearly becomes divergent. However, the present theorem shows that the 

subspace structure is still boundedly perturbed. (In essence the mixing is between 

eigenvectors now spanning the subspace associated with the multiple eigenvalue - not 

outside of it. Put another way, theorem 1 predicts very large perturbations of the 

eigenvectors of very close eigenvalues but this large perturbation is essentially due to the 

alternate bases for the same subspace they span.) 

Proof: From the perturbation theory about the eigenvectors associated with a multiple 

eigenvalue (Wilkinson 1965), we can suppose u  and ∑∑
+==

∆+=′
m

rj
jij

r

j
jiji fp

1
,

1
, uu

ii λλλ ∆+=′ . Note:  are different from ijp , ijf ,∆ .  can possibly take any value within 

[-1,1], while  approach zeroes if N is small enough.  

ijp ,

ijf ,∆

 iii uuNA ′′=′+ λ)(  (33) 

Equating the first-order terms of (33) produces: 

∑∑∑∑∑∑
=+===+==

∆+∆+≈+∆+
r

j
jiji

m

rj
jij

r

j
jij

r

j
jij

m

rj
jij

r

j
jij pfppfp

1
,

1
,

1
,

1
,

1
,

1
, uuuuNuAuA λλλ  (34) 

Then 

  (35) ∑∑∑
=+=+=

∆+∆≈+∆
r

j
jiji

m

rj
jijirmm

m

rj
jijj pff

1
,

1
,:1,:11

1
, ],,[ uupCuuu λλλ L

where p . Equating the coefficients of u  for (T
iriii ppp ],,,[ ,,2,1 L= j ),,1 rj L= , we have 
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 iiirr ppC λ∆=:1,:1  (36) 

where C  is the left-up rr :1,:1 rr×  submatrix of C. If C  has r distinct eigenvalues, the 

solution of 

rr :1,:1

iλ∆  and p  is unique, as (36). From (36), P is same as U , as defined in the 

theorem. After substituting 

i
ˆ

iλ∆  and  in (34), the equality of u  for  

produces the first order perturbations of 

ip j ),,1( mrj L+=

ijf ,∆  as in the theorem.           □ 

 

Following the same notation as used in theorem 2, we now consider the 

perturbation expansion, where the matrix has at least one multiple singular value. 

Theorem 4: A, B, C and  are defined as those in theorem 2. Define . Without 

loss of generality, suppose the first r singular values of A are same: {

Σ ΣCD +=

| ii == },,1 rLλλ . 

By SVD, D . Let U , , and 

. 

T
rrr tdiag VU ˆ},,ˆ

:1,:1 L=

V ′′

t{ 1 







=′′

−kmI
Û









=

−kmI
V̂′′V

DUD ′′=′ T

  (37) T)()( VVDUUB ′′′′′=

The perturbed singular values, { }iλ′ , right singular vectors { }iv′ , and left singular vectors 

 for 1 , of B are respectively  }{ iu′ ri ≤≤

 iiii td =′=′ ,λ  (38) 

 ∑∑
+== −

′+′
+=′

m

rj
j

j

jijij
r

j
jiji

dd
u

1
22

,,

1
,ˆ uuu

λλ
λλ

 (39) 

 ∑∑
+== −

′+′
+=′

m

rj
j

j

jiijj
r

j
jiji

dd
v

1
22

,,

1
,ˆ vvv

λλ
λλ

 (40) 
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The perturbations, associated with other non-zero simple singular values, can be obtained 

as in theorem 2.  

This theorem completes the picture - now for equal singular values: showing that even in 

the case of coincident singular values, the perturbations are likely to be “well behaved”. 

Proof: Let D have { }iκ , {  and {  as its first r singular values, right singular vectors 

and left singular vectors respectively. For 

}ix }iy

ri , {> }iκ , {  and {  can be obtained as 

in theorem 2. Thus, we concentrate on the perturbed {

}ix

}

}iy

iκ , {  and { , for }ix }iy ri ≤ . 

Combining the techniques in the proof of theorem 2 and theorem 3, we assume that the 

perturbed right/left singular vectors, x  and  i iy )1( ri ≤≤  respectively, have the 

following forms: 

  (41) ∑∑
+==

∆+=
m

rj
jij

r

j
jiji fp

1
,

1
, eex

   (42) ∑∑
+==

∆+=
m

rj
jij

r

j
jiji gq

1
,

1
, eey

Note:  and  can possibly take any values within [-1,1], while ∆  and ijp , ijq , ijf , ijg ,∆  

approach zeroes if N is small enough. Because the singular values of the matrix, A, are 

the square roots of the eigenvalues of AA , and due to the continuity of the eigenvalues 

of , the singular values of A also obey Ostrowski’s continuity rule (Wilkinson 

1965). Supposing the associated singular value is 

T

TAA

ii λλκ ∆+= , the equality of the first-

order terms of iiyiDx κ=  and  produces: ii xκi
T yD =

  (43) ∑∑∑∑∑
+===+==

∆+∆+=+∆+
m

rj
jij

r

j
jiji

r

j
jij

m

rj
jjij

r

j
jij gqpfp

1
,

1
,

1
,

1
,

1
, )( eeCeee λλλλλ
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  (44) ∑∑∑∑∑
+===+==

∆+∆+=+∆+
m

rj
jij

r

j
jiji

r

j
j

T
ij

m

rj
jjij

r

j
jij fpqgq

1
,

1
,

1
,

1
,

1
, )( eeeCee λλλλλ

From (43) and (44), we have, by equating e  (for s rs ,,1L= ): 

  (45) isi

r

j
jsijis qcpp ,

1
,,, )( λλλ ∆+=+∑

=

  (46) isi

r

i
sjijis pcqq ,

1
,,, )( λλλ ∆+=+∑

=

In matrix form, (45) and (46) are: 

 iiirr qpIC )()( :1,:1 λλλ ∆+=+  (47) 

  (48) iii
T

rr pqIC )()( :1,:1 λλλ ∆+=+

where  is the left-up r-by-r submatrix of C,  and 

 . From (47) and (48), 

rr :1,:1C

ii q ,, ,2,1

T
iriii ppp ],,,[ ,,2,1 L=p

T
iri qq ],[ ,L=q iλλ ∆+ ,  and  are respectively the 

singular value, the right and the left singular vectors of C

ip iq

Iλ+r:1r ,:1 . Consequently, Q and 

P are U  and  in the theorem, respectively. Cˆ V̂ Iλ+rr :1,:1

}i

 just has r singular values, right 

and left singular vectors, which correspond to {λ , {  and { , for }ix }iy ri ≤ , of D. 

Equating the  in (43) and (44), for te rt > , we have 

  (49) ittit

r

j
jtij fgcp ,,

1
,, ∆−∆=∑

=

λλ

  (50) ittit

r

j
tjij gfcq ,,

1
,, ∆−∆=∑

=

λλ
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Note for t>r and rj ≤ ,  and jtjt dc ,, = tjtj dc ,, = . And, from the fact D  (in 

the definition of the theorem) and the fact Q and P are U  and  respectively (as proved 

above): 

VDU ′′′′=′ T

ˆ V̂

  (51) it

r

j
jtij

r

j
jtijittit ddpcpfg ,

1
,,

1
,,,, ′===∆−∆ ∑∑

==

λλ

  (52) ti

r

j
tjij

r

j
tjijittit ddqcqgf ,

1
,,

1
,,,, ′===∆−∆ ∑∑

==

λλ

Combining (47-48) and (51-52),  

 ∑∑
+== −

′+′
+=

m

rj
j

j

jiijj
r

j
jiji

dd
p

1
22

,,

1
, eex

λλ
λλ

 (53) 

 ∑∑
+== −

′+′
+=

m

rj
j

j

jijij
r

j
jiji

dd
q

1
22

,,

1
, eey

λλ
λλ

 (54) 

are respectively the right and left singular vectors of D. According to the coordinate 

transformation of B  and the fact that Q and P are U  and  in the theorem, the 

first r left/right singular vectors of B are as defined in ( , ).                □ 

TUDV= ˆ V̂

39 40
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A.2 Denoising capacity of SVD 

A.2.1 Case of distinct singular values 
First, we consider the simplest case: a square matrix with a few distinct non-zero 

singular values. Recall the definitions in theorem 2 and lemma 1: A is the signal matrix, N 

is the i.i.d. Gaussian noise matrix (with zero mean and  variance), B=A+N, 

 and . Note C is still an i.i.d. Gaussian noise matrix (with zero 

mean and  variance). Further, define 

2σ

TVUA Σ=

σ

NVUC T=

2 ΣCD += . Then,  

   (55) TUDVB =

}{ iu′ and { , are respectively the left/right singular vectors of B. {  and { , are 

respectively the right/left singular vectors of D. Because U and V in (55) are orthogonal 

matrices,  

}iv′ }ix }iy

 ii Uyu =′  and ii Vxv =′   (56)  

And, also from (55), the singular values of B, }{ iλ′ , are same as the corresponding 

singular values of D. 

Suppose that the noise-free matrix A should have a rank of r, i.e. . 

Combining (11), (55) and (56), the closest rank-r approximation of B is  

∑
=

=
r

i

T
iii

1
vuA λ

   (57) TrT
r

i

T
iii

r

i

T
iii

r VUDVxyUvuB =′=′′′= ∑∑
==

)(
11
λλ

where . ∑
=

′=
r

i

T
iii

r

1
xyD λ

Then 
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2

,
,,

2 )(||||
Fji

T
jiji

r
jiF

r d∑ Σ−=− vuAB   (58) 

Due to the mutual orthonormality among any u , we have the following formula: T
ji v

 
22||||
F

r
F

r ΣDAB −=−  (59) 

From lemma 1 we can write an expression for the terms , for the special 

case where A is rank-r and thus the 

T
iii xyλ′

iλ  are zero for ri . For example , is: > T
11x1yλ′

   (60) 






 +
≈








′

′′
≈′

0ξ
ς

0ξ
ς

xy
1

11,11

1

11
111 λ

λλ
λ

λλ
λ
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T c

where 
T

mr

r

rrr
m

cccccc








−

+

−

+
= +

−
1

,1

1

1,1
22

1

,111,
2
2

2
1

2,111,22
1,1][

λλλλ
λλ

λλ
λλ

LLς , and 

T
mr

r

rrr
m

cccccc








−

+

−

+
= +

−
1

1,

1

1,1
22

1

,11,1
2
2

2
1

2,121,21
1,1][

λλλλ
λλ

λλ
λλ

LLξ

222 xy

. Note, 2nd-order and 

higher-order terms in (60) have been dropped, and that the above matrix has zeros except 

for entries in column 1 and row 1. The reader can verify for themselves that, on adding 

the contribution for λ′

222 xy

fills in the second column and second row, with entries 

similar to the first row but also that where these overlap with column 1 and row 1, the 

contribution of λ′ leads to a simplification of the expression in those two entries. 

By combining all such terms, filling in rows and columns, it is straightforward to 

obtain 

  (61) mmmmmm
r

,,, ][][][ YΣD ≈−
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where   

mmrmrmrrmrmm

rrr

rmrmrrr

mr

rrrrr

r
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cc

cc

cc

cc

cc

,,,,1,

,11,1

,,1,

,11,1

,,1,

,11,1
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00



























































































=

−−−

++

−+

+

L

MOM

L

L

MOM

L

L

MOM

L

L

MOM

L

Y

There are two notable aspects of what has just been derived. Firstly, there is a large zero 

block which reduces the degrees of freedom that can “hold” significant noise. Second, the 

non-zero part of the matrix is, to first order, composed of elements of the same size as the 

original noise elements. Thus the rank projected matrix has been “de-noised” by the 

amount given below: 

 222
,

22 )2(|||| σrrmEyEE jiFF
r −===− ∑YAB  (62) 

 
m

rrmabE ji
r

ji

2

,,
2|| −

=− σ   (63) 

Obviously, (62) is a special case of (1) for square matrices, where n=m. 

We also note that, in deducing the formula (61), we do not impose the i.i.d. 

Gaussianality upon the noise in the observed matrix. This means that the zero-block of Y 

in (61) holds for any type of noise, if and only if the noise level is small enough compared 

with the signal level. In fact, the i.i.d. Gaussianality of the noise matrix is required only at 

the last equality of (62). From another point of view, the noise matrix can be decomposed 

into  components: { . The components of the noise matrix, 

for , “live” outside of the subspace we project onto and 

therefore can be reduced or denoised in the rank-r approximation; while the other 

2m

,{(i

}1,1| mjmiT
ji ≤≤≤≤vu

}mj ≤<,|) rmirj ≤<
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components of the noise, for {( }|), rjorriji ≤≤ , are kept. The denoising capacity for 

non i.i.d. Gaussian noise is dependent on the ratio of the number these two types of 

components. 

T
r

i

T
iii

T
ii VxyUvu ′=′′ ∑

=

)(
1
λ

′′

′
′′′

′′′

++

+

+

0

0

,1,

,11,1

1,,1,

1,1,11,1

L

MMOM

L

L

MMOM

L

rmm

rr

rrrrr

rr

d

d
dd

dd

A.2.2 Case of multiple singular value 
As in the theorem 4, suppose A has r singular values the same as each other. 

Following the notation in theorem 4, we similarly have: 
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By the same techniques as in the previous section, the first-order perturbation of D  has 

the following form: 
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Then, 
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Since : CΣD += iiiii cd λ+= ,,  for ri ≤≤1  and jiji cd ,, =  if )},(,),2,2(),1,1{(),( rrji L∉ . 

Thus, we also have D , which is the same result as in the case with distinct 

singular values. 

YΣ =−r

A.2.3 Extension to the case of a rectangular matrix 
The analysis of the case where the matrix is rectangular follows the same pattern as 

described and is omitted for brevity. 
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A.3 Learning capacity of LSA-based recognition system 

A.3.1 Perturbation of the basis images 
First, we analyze the learning stage, by using the matrix perturbation theory in 

appendices A.1.3 and A.1.4. By SVD, the low-dimension subspaces, U  

and , as defined in theorem 2, are obtained. In some cases, such as in 

face recognition, the consequent step is contingent on an accurate basis. Here, we only 

consider the subspace : U , where 
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Note: From (66), we can see that (roughly) the perturbed { }iu′  have been corrupted 

to different extent, which depends on their associated singular values. For example, 

∑∑
+==

+
−

+
+≈′

m

rj
j

j
r

j
j

j

jjj ccc

1 1
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2
22

1

,11,1
11 uuuu

λλλ
λλ

, where the third term ∑
+=

m

rj
j

jc

1 1

1, u
λ

 is inversely 

proportional to 1λ . If we only consider the perturbations, coming from { , u)}( ri >|iu 1′  

can be considered cleanest, while u r′  the dirtiest. In the following section A.3.2, we will 

return to this point when the projection error is analyzed. 
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Furthermore, to decompose H into: GFEH ∆+∆+= , where E  
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A.3.2 Projection of a new test image on the basis images 

The underlying noise-free subspace U . Suppose a noise 

corrupted test image p, to be identified, is observed. Its underlying truth is q and the noise 

in p is n. Vectors q and n can be represented in U as

UE
0

I
U =








=

×− rrm

rr

)(

Ufq =  and , and 

consequently . Because q , only the first r components of f are 

possibly non-zeroes, i.e. f . In practice, the noise-corrupted test 

image has to be projected on the noise-corrupted basis in the recognition system because 

gUn ∆=

)( gfUp ∆+=

=

r

T]0,L
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rf ,0,ff ,,,[ 21 L
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the noise free basis is always unknown. More formally, substitute 

 and )( GFEUHUU ∆+∆+==′r )( gfUp ∆+=  into the projection error of p on U , 

: 
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where ; and ∆  has same components as g∆ , except its first r 

zeroes, i.e. ∆ . Note, Erg∆ +
TF∆  is antisymmetric, i.e. 

; and, the 2-order and higher-order terms in (69) have been dropped: 

∆F and ∆G can possibly approach 0. From (69), 
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We suppose the basis is obtained from n learning samples, i.e., the learning matrix 

is A , and each entry of A has energy of  and is corrupted with i.i.d. Gaussian 

noise with energy of . It is also assumed that the test image has energy of  and is 

corrupted with noise of . 
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tF rm σ−≅′∆ |||| g  and lFi rm σ−≅′ |||| c . Due to the independence among 

, (71) becomes }},,1|{,{ rii L=′′∆ cg
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which is ( ) in result 2 of section 2. And,  6

 )( 222
tsF

m σσ +≅p   (73) 

The second term in (72) is caused by the noise in the learning samples because it 

is independent of the noise level in the test image. Furthermore, this part is contingent on 

the ratios between {  and {} }iλ . Note, however, that this last term is not independent of 

the chosen test image because  }{  is the representation of the underlying noise free test 

image in the true (noise free) subspace that we tried to learn. More specifically, the error 

of 

if

 in the second term of (72) is caused by the perturbation in u  and that 

subspace perturbation is amplified by the ratios between the true image components and 

the singular values of the true matrix SVD. Thus, it can be concluded that the basis u

i′

1′  

that corresponds to the largest singular value leads to the least noise amplification and is 

in that sense the “cleanest”, and that the basis u r′  that corresponds to the least singular 

value is the “dirtiest”.  

For a random test image, the best and worst performance is: 
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It can be easily proved that n
rrmrm l

t

2
2 )() σσ −+−(  is the expectation for any 

test sets when all of the r (non-zero) singular values of the learning matrix A are equal.  

A.3.3 Performance analysis over the learning samples 
Here, we analyze the average performance of the system when we test the basis on 

the whole learning examples, i.e. all the images that are used to obtain the basis images. 

Using the notation in section A.3.2: q and p are the noise-free and observed test image, 

and q  (f is a vector of coefficients of the uncontaminated image expressed in the 

uncontaminated subspace). In fact, q is one of the columns of A, { . Note: p 

is an observation of q that contains noise and that we allow this noise to have a different 

scale 

Uf=

t

},,1| nii L=a

σ  to the noise in the observations lσ  used to learn the subspace. We sample noise 

corrupted versions of the columns of A with uniform probability of the column number 

and each sample has i.i.d. noise tσ . We then seek the expectation of the error in the 

projection onto the learned subspace: 

 ∑
=

=∈

=∈
−+−=′′−

r

i i

ini
lt

F

Trr

ni

fE
rmrmE i

i 1
2

2

},,1|{22
2

},,1|{
)()(

λ
σσ L

L

aq

aq
pUUp  (77) 

From the SVD of A,  
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Perhaps surprisingly,  
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Substituting (78) into (77), obtain 
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which is ( ) in result 2 of section 2. 7

From this formula, (79), we can see clearly the effects of all the parameters in the 

recognition system. Given that the noise in the learning samples and in the test image, 

compared with the signal, is small, the performance can be regarded to be independent of 

the signal level. As m, compared with r, approaches a very large number, the SSD is 

almost linearly dependent on m. As the number of the learning samples, n, increases, the 

recognition system improves: the error from the basis images decreases, and as n 

approaches infinite, the error from the basis images approaches zero. However, the error 

from the test image can’t be reduced except by having a cleaner image. 

Another measure, used in the recognition system, is the angle between the test 

image and the basis images: 
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Supposing m>>r, the angle is independent of the size of the object, and depends 

on the energy levels of the signal and the noises (in the learning samples and in the test 

image). As the size of the learning samples, n, increases, the system improves: the error 
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from the basis images approaches zero and the error from the test image gradually 

dominates in the total error. 

A.3.4 The optimal learning set 
Suppose that the expectation of the test images, i.e. { , in (72), is known. How 

should we design the recognition system? Specifically, how to select the learning 

samples, so that the system, concerning the expectation, has the best performance?  

Obviously, only the second term in (72) is dependent on the learning samples. The 

problem is: 

}2
if

 ∑ 2

2

min
i

if
λ

, subject to Ci =∑ 2λ   (81) 

Ci =∑ 2λ  means that, when the dimension, m, and the size, n, of the learning samples is 

large enough, the signal energy, ∑ 2
iλ , should be approximately mn . By using a 

Lagrange multiplier, the minimum can be obtained iff 

2
sσ

 Consf

i

i ≡2λ
 (82) 

which is ( ) in result 2 of section 2. 8

From (82), we can draw the conclusion that the basis images, obtained from the n 

samples of A (i.e., { ), are not optimal when the test image set is also 

. (Though, this conclusion is somewhat surprising.) The reason is that, the 

basis, associated with the largest singular value, is overlearned in the learning process: 

From (82), the optimal learning ability, , should be proportional to , while  is 

actually proportional to , as in (78). 
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However, the expectation of the test images {  is usually not known beforehand. In 

such cases without prior knowledge, we can reasonably suppose that E  in (72) are 

statistically equivalent. From (82), the optimal learning set for such a random test image 

should have r equal singular values, and, for a random test image, (79) is the optimal 

reconstruction error. 

}2
if

)( 2
if
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