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Abstract: In this paper, we study the parameter estimation problem in a general 

heteroscedastic linear system, by putting the problem in the framework of the bilinear 

approach to low-rank matrix approximation. The ellipse fitting problem is studied as a 

specific example of the general theory. Despite the impression given in the literature, 

the ellipse fitting problem is still unsolved when the data comes from a small section of 

the ellipse. Although there are already some good approaches to the problem of conic 

fitting, such as FNS and HEIV, convergence in these iterative approaches is not ensured, 

as pointed out in the literature. Another limitation of these approaches is that they can’t 

model the correlations among different rows of the “general measurement matrix”. Our 

method, of employing the bilinear approach to solve the general heteroscedastic 

parameter estimation problem, overcomes these limitations: it is convergent and can 

cope with a general heteroscedastic problem. Experiments show that the proposed 

bilinear approach performs slightly better than other competing approaches. 
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1 Introduction 

Parameter estimation in a heteroscedastic system has become an active subject, in order 

to overcome the difficulties of the total least squares (TLS) method [13], as can be 

found in [6-8, 22, 23, 25, 26]. Another active research topic is to employ the bilinear 

approach to calculate the low-rank approximation of a large matrix in some challenging 

environments [11, 24, 27, 30, 31], where the traditional SVD [10] does not work or its 

solution is not optimal. Here, in this paper, we apply the bilinear approach to solve the 

parameter estimation problem in a general heteroscedastic environment. First, we 

review the work on these two research topics. 

 

1.1 Parameter estimation in a heteroscedastic system 

Many parameter estimation problems can be reduced to the following linear form: 

 0)( =θxwT  (1) 

)(xw  are n×1 carriers of the observed quantity x, for example, a prominent problem in 

computer vision: conic fitting. We will study the conic fitting problem in section 4. 

 

Suppose m different quantities ix  ),,2,1( mi L=  are observed. We arrange the 

carriers as a general “measurement matrix” nmR ,∈W : 
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Without loss of generality, suppose nm ≥ . If not, (2) is an underdetermined system. If 

W is noise free, it is rank deficient, with a rank of n-1 at most. However, it quickly 

becomes full rank, due to noise. Many optimization approaches and their associated 

objective functions have been proposed to solve this parameter estimation problem, as 

can be found in a comprehensive survey [33]. Among them, a straightforward solution 

to (1) is the right singular vector of W, associated with the least singular value. Such a 

solution is usually called as the TLS estimate [13], because it minimizes the following 

objective function: 
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 2||||)()( θθxwxwθ∑ i
T

i
T  (3) 

It is also the maximum likelihood (ML) estimate if the noise/uncertainty in the carriers 

w (not the observed quantities x) is i.i.d. Gaussian.  

 

However, the assumption of i.i.d. Gaussianality usually does not hold, especially in the 

system (1), because the carriers are transformed quantities of the observed data. Even if 

the noise in x can reasonably be assumed to be i.i.d. Gaussian, the uncertainty in the 

carriers w often loses this property. The violation of the i.i.d. Gaussianality makes the 

problem challenging to the TLS method. For example, a biased estimate is obtained by 

the TLS method, if the noisy points come from a segment of the conic, as testified 

experimentally [22, 23] and proved theoretically [20, 21].  

 

In order to overcome the difficulties, introduced by the non-i.i.d. Gaussianality, 

Kanatani analyzed this problem from a geometric statistics view and devised the 

renormalization method [19-21]. The idea behind this is to approximately equalize the 

noise in all carriers. Other general approaches to this heteroscedastic problem include 

HEIV [22, 23, 25, 26] and FNS [6, 8]. In the HEIV model, the covariance matrix iC  

between the carriers in iw  is first obtained from a linearization process, then, the 

parameters θ  are estimated by minimizing the Mahalanobis distance: 

 ∑
=

− −−
m

i
ioii

T
ioi

1
)()( wwCww   (4) 

where −C  is the pseudo inverse of C and iow  is the underlying ground truth of iw . 

This minimization problem is reduced to a generalized eigenproblem, where the 

generalized eigenvector, associated with the least eigenvalue, is needed. In the FNS 

method, an approximated maximum-likelihood (AML) objective function is employed. 

It is also reduced to a generalized eigenproblem. In [8], it has been proved that these 

two approaches, HEIV and FNS, are intimately related.  

 

Another interesting problem in conic fitting, or in general second-order curve fitting, is 

to analyze the bias of the estimates. Ideally, the estimates are unbiased, like Kanatani’s 

renormalization method [20] and Werman and Geyzel’s method [32], which have been 

explicitly proved as unbiased. Note that Werman and Geyzel’s method [32] is for 
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general second-order curve fitting, and that we do not imply other competing 

approaches, like HEIV and FNS, are biased. And, in this paper, we do not intend to 

analyze the biases of the estimates, and we will only concentrate on the whole 

performance of the estimates.   

 

1.2 Bilinear approach to the low-rank matrix approximation 

The SVD is the basic tool for calculating the low-rank matrix approximation. The 

principle behind the SVD [10] states that any matrix, nmR ,∈W , can be decomposed 

into 

 TVUΣW =  (5) 

where mmO ,∈U , nnO ,∈V  and nm
p Rdiag ,

21 },,,{ ∈= σσσ LΣ , with ),min( nmp =  

and 021 ≥≥≥≥ pσσσ L . An important fact [10] is that one can easily construct 

rW , the closest rank r approximation of W, measured by 2-norm or Frobenius-norm, 

as: 

 ∑
=

=
r

i

T
iii

r

1
vuW σ  (6) 

Specifically,  

 12 +=− r
r σWW  (7) 

 ∑
+=

=−
p

rj
jF

r

1

2σWW  (8) 

 

From the optimality measured by the Frobenius-norm, the estimate by (6) is also the 

ML estimate [12, 28, 29], if the noise in the matrix W is i.i.d. Gaussian.  

 

However, the SVD method does not work on an incomplete matrix (with missing data). 

Moreover, the solution by (6) is not optimal if the noise in W does not obey the i.i.d. 

Gaussian model. Efforts have been devoted to the missing data problem [5, 11, 15-18] 

and the heteroscedastic noise problem [1-4, 14]. Except these efforts, another 
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promising approach to these problems is the bilinear approach [11, 30, 31]1, where one 

tries to fit W as the product: 

 RS (9) 

with rmR ,∈R  and nrR ,∈S . To do so, one iteratively updates R and S, by alternately 

holding S and R constant, respectively: 

 Fnew ||||min RSWR
R

−=  (10) 

 Fnew ||||min RSWS
S

−=  (11)  

The objective functions in (10) and (11) can be reformulated, respectively, as:  

 ∑∑ ′−′=′−′=−
i

F
T

i
T

i
T

i
FiiF

222 ||)()(|||||||||| wrSSrwRSW  (12) 

 ∑ −=−
i

FiiF
22 |||||||| wRsRSW  (13) 

where iw′  is the ith row of W and ir′  is the ith row of R, and is  and iw  are the ith 

columns of S and W, respectively2. If the noise in W is i.i.d. Gaussian, ir′  in (12), or 

is  in (13), can be separately calculated as the least squares (LS) solution, which 

minimizes  

 2||)()(||minˆ F
T

i
T

i
T

i
i

wrSr
r

′−′=′
′

 (14) 

 2||||minˆ Fiii
i

wRss
s

−=  (15) 

 

Note the similarity between (12) and (13), or between (14) and (15). In (12) or (14), 

each row of R, ir′ , needs to be computed; and similarly, each column of S, is , needs to 

be computed in (13) or (15). Intrinsically, these two sub-problems are same: to solve a 

linear system. This way, each sub-step of the iteration is reduced to solving a linear 

system:  

 Ax=b (16) 

with the LS solution as: 

 bAx −=ˆ  (17) 

                                                 
1 In [31], the bilinear approach is called the PowerFactorization method. 
2 In the following, a matrix is usually denoted by a bold capital letter, eg W. Its ith column is denoted by 

iw  and its ith row is denoted by iw′ . 
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However, the updatings of R and S in a heteroscedastic linear system, which is the 

subject of our paper, are no so straightforward as (17), as can be found in section 3. 

 

Algorithm 1 (Bilinear algorithm): 

Given an input matrix W, factor W as the product of RS as (9). 

1. Initialize the factor R in (9). For example, R can be randomly generated as an 

m-by-r matrix, as in [30]. 

2. While keeping R constant, update each column of S, is , according to the LS 

solution (15). 

3. While keeping S constant, update each row of R, ir′ , according to the LS 

solution (14). 

4. Calculate the product of SRW ˆˆˆ = . If this is the first iteration, go into step 2; 

else if ε<− ||ˆ|| oldWW , where ε  is a small positive number, end the iteration 

and output R̂  and Ŝ , else store Ŵ  as oldW  and go to step 2. 

 

In the limit, as 0→ε , the product of RS approaches the r-rank approximation matrix 

by SVD, i.e. that from (6). Thus, the rank r approximation of matrix W can also be 

solved by iteratively updating its factors row-by-row (column-by-column), as in 

algorithm 1. More details about the bilinear approach can be found in [30], and we will 

revisit this point in section 3. In this bilinear approach to the low-rank approximation, 

the missing data problem can be naturally coped with, and a scalar-weighted 

uncertainty can also be incorporated [30]. Moreover, this bilinear approach can be 

further developed to incorporate directional uncertainty [27] (although the 

measurement matrix was assumed to be complete in [27], the method can be naturally 

extended to the missing data problem, with directional uncertainty.) 

 

However, the bilinear algorithm, algorithm 1, also suffers from the heteroscedastic 

noise problem. The reason for this lies in the fact that the central idea of the bilinear 

algorithm is its LS-based updating rules, as step 2 and step 3 in algorithm 1. In (14) and 

(15), the objective function is to minimize the sum of the square difference, without 

considering any statistical properties among the data in W. 
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1.3 The issues to be studied and the organization of this paper 

In HEIV and FNS, only the correlation among the carriers in each )( ixw  can be dealt 

with, although this is the most common case in practice. (Note that there are n 

transformed quantities in each )( ixw .)  In this paper, we will consider the general 

case, where the uncertainties in different carriers )}({ ixw  are correlated. To do so, we 

rephrase the general heteroscedastic parameter estimation problem into the framework 

of the bilinear approach. Then, to make our theory concrete, we consider a specific 

computer vision task: conic fitting. 

 

In section 2, we formulate the parameter estimation problem with an objective function 

which is subtly different from (4), and then we rephrase this problem in the framework 

of the low-rank matrix approximation. In section 3, we present our bilinear approach to 

the problem of the low-rank approximation in the heteroscedastic system. In section 4, 

we study the specific computer vision task: conic fitting, including the issue of noise 

level estimation. In section 5, our results, with comparison with other competing 

approaches, are presented. 
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2 The parameter estimation problem  

2.1 Objective function to be minimized 

Temporarily, we suppose that the noise model for the carriers )}({ ixw  is known. More 

precisely, the correlated Gaussian model, with covariance matrix mnmnR ,∈C , is 

employed to characterize the uncertainties among the vectorized carriers }{1 Wvec , 

where  

 1,2

1
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)(
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 (18) 

Please note that the covariance matrix C is symmetric and positive semi-definite, and 

can be factorized into ∑
=

=
mn

i

T
iii

1
uuC σ , with 0≥iσ . The characterization of the 

uncertainty using correlated Gaussian models is application dependent. For example, 

the uncertainties in the applications of conic fitting and fundamental matrix estimation 

have been studied in [22, 23]. In section 4.1, we will include the conic fitting as an 

example of how to obtain the correlated Gaussian model. 

 

We start by defining the following modified Mahalanobis distance as the objective 

function to be minimized: 

 )}{1()}{1(min lWClW
l

−− + vecvec T  (19) 
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with a rank n-1 matrix nm
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In plain language, the minimization of the objection function (19) is to obtain a rank n-1 

approximation matrix, which has the minimal modified Mahalanobis distance to the 

general measurement matrix. However, because the (modified) Mahalanobis distance is 

defined for vector and is not applicable to matrix, we have to vectorize the m-by-n 

matrix to an mn vector, as in (18). If the uncertainties in the general measurement 

matrix are Gaussian, i.i.d. or correlated, the minimizer of the (19) is the ML estimate, as 

will be shown in section 3.  

 

Assume that l̂  is the solution of the system of (19), and it has an associated rank n-1 

matrix L̂ . The solution of the system of (1) is taken as the right singular vector of L̂ , 

associated with the least singular value. 

 

If the uncertainties in different carriers )( ixw  and )( jxw  for ji ≠  are independent, 

the objective function (19) can be formulated as  

 ∑
=

+ −−
m

i
ioii

T
ioi

1
)()( wwCww  (20) 

where iC  is the covariance matrix for )( ixw  and the matrix, 


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w

w
w
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, has a rank of 

n-1. 

 

Despite the similarity between (20) and (4), which is the objective function of the HEIV 

method, please note the difference between them. First, oiw  is the assumed underlying 

ground truth, in (4). In contrast, in (20), oiw  can be characterized by the property that 

its associated matrix has a rank of n-1.  We are deliberately projecting onto the 

“nearest” rank n-1 matrix as the starting point of our bilinear approach to the 

heteroscedastic problem. Second, the modified Mahalanobis distance is employed in 

(20). In contrast, the Mahalanobis distance is employed in (4).  They are identical if the 

covariance matrix is non-singular. However, there is a difference in cases, where the 

covariance matrix is singular, i.e., some singular values of the covariance matrix are 

zeroes. Obviously, if iσ  is zero, and (19) or (20) are not mathematically meaningful. It 
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will become clear in section 3.1.1, that, in such cases, this can be reduced to an equality 

constrained LS problem [10]. In contrast, (4) can be reduced to a LS problem. 
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3 The bilinear approach to the heteroscedastic parameter 

estimation 

As stated as (10-15), the central idea of the bilinear approach is to iteratively update R 

or S, by holding S or R constant, respectively. Although, in section 1.2, we have 

reformulated each updating step of the bilinear approach in a simple mathematical 

language, as the linear system (16); the case becomes complicated if the uncertainty 

model in W is not i.i.d. Gaussian. Our approach to this problem is to extend the bilinear 

approach to cope with heteroscedastic noise. As in algorithm 1, we also iteratively 

update the factors R and S, while keeping S and R constant, respectively. However, we 

can’t simply update R and S row-by-row/column-by-column, using the LS based rule. 

 

In order to simplify the development of the solution to the low-rank approximation in a 

general heteroscedastic system, we first consider the case of (20), where the 

uncertainties between different carriers )( ixw  and )( jxw  for ji ≠  are independent 

and the uncertainty in )( ixw  is assumed to be a Gaussian density with a covariance 

matrix iC . This particular case will be developed in sections 3.1 and 3.2, and the 

algorithm will be given in section 3.2. 

 

3.1 Update of R 

In the case of (20), the uncertainties between different rows of W are assumed to be 

independent, so we can separately update each row of R, i.e., row by row. The updating 

of each row of R equals to solving the linear system (16). Note that, A is TS , and b is 

the transform of the ith row of W, T
i )(w′ ; and the estimated x̂  would be the transform 

of the ith row of R, T
i )(r′ , which is to be updated. Because the uncertainties in b are 

modeled as correlated Gaussian noise, with a presumably known covariance matrix of 

C, and (16) becomes a heteroscedastic linear system, we can’t use the LS-based 

solution (17).  

 

Instead, we use the following minimization objective function for a linear 

heteroscedastic system (16): 
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 )()(minˆ bAxCbAxx
x

−−= +T  (21) 

 

Suppose T
nddddiag UUC ),,,( 21 L= . Define 

T
nddddiag UQ )/1,,/1,/1( 21 L= . The solution to (21) is: 

 QbQAx += )(ˆ  (22) 

Proof: We arrange the minimization objective function in (21) as: 

 )()()()( QbQAxQbQAxbAxQQbAx −−=−− TTT  

Obviously, (22) is the solution of minimizing the above objective function, and 

consequently, is the solution of (21).                                

 

It will become clear in section 3.1.1, that the uncertainties in Qb are i.i.d. Gaussian. 

And, (22) is the LS solution the equation of QbxQA =)( . By the transformation of Q, 

the heteroscedastic noise property in each row of W is considered. 

 

3.1.1 Case with zero singular values in the covariance matrix C 

As we note in section 2.1, the modified pseudo inverse of the covariance matrix C does 

not make sense if C has some zero singular values. However, there is usually a constant 

carrier in (1), i.e., this component is noise free. Consequently, C has, at least, a zero 

singular value. Here, we study this case and present our solution to this problem. This 

analysis also presents the central idea of the updating in a heteroscedastic system: we 

transform the quantities so that the transformed uncertainties become i.i.d. Gaussian 

and the LS solution can be applied to the transformed system. 

 

First, we study the covariance matrix of the transformed b, bUT .  

 ),,,()cov()cov( 21 n
TTT ddddiag L=== CUUUbUbU  (23) 

(23) means that the coupled uncertainties in b have been decoupled in the transformed 

bUT . If all 0≠id  and the coupled uncertainties in b are Gaussian, the uncertainties in 

Qb  are i.i.d. Gaussian. 
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Any zero id  in (23) means that the iu -direction component of b, buT
i , has no 

uncertainties or noise. Without loss of generality, we suppose the last k id  for 

nkni ,,1L+−=  are zeroes.  

 

In the following, we transform b into two parts: one part is with i.i.d. Gaussian noise, 

and the other is noise free. Define A
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Now, it is clear that the uncertainties in 1b  are i.i.d. Gaussian, and that 2b  is noise 

free. Thus, the optimum estimate of (21) should be the solution of the following 

constrained minimization problem: 

 11
22

min bxA
bxA

=
=

 (24) 

(24) is an equality constrained least squares problem, and its solution can be found in 

[10] (See the appendix, too).  

 

Now, it is clear that our objective function in (19) or (20) makes sense if we adopt the 

interpretation of 00/0 = . More importantly, the solution of (24) is the minimizer of 

(21), under this assumption. 

 

In contrast, if we employ (4) as the objective function in zero-singular-value cases, as in 

the HEIV method, (21) will be reduced to a simple LS problem: 11min bxA = , without 

the equality constrained 22 bxA = . Obviously, the objective function of (4) can’t be 
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employed in such cases. In order to overcome this difficulty in [22, 23], the constant 

component is not included in (4), and has been separately considered from the other 

columns. 

 

As can be seen above, the updates of R can be computed, row by row, because the 

noises in W are row-independent. And, because the noises in each row of W are 

correlated, a non-Frobenius-norm objective function (21) is employed. The central 

idea in the updating of each row of R is that, we transform the quantities so that the 

transformed uncertainties become i.i.d. Gaussian and the LS solution can be applied to 

the transformed system. This principle also applies to the analysis below. 

 

3.2 Update of S 

The scene changes, as the updating of S is concerned. Because the uncertainties in 

different columns of W, iw  and jw  for ( ji ≠ ) in (13), are not independent, the 

updating of S can’t be dealt with, column by column, as in the updating of S above. We 

have to jointly solve a matrix equation: AX=B. Note that, A is R, and B is W; and that 

X is the S, which is to be updated. 

 

Fundamentally, we abstract (13) as the following minimization problem. 

Suppose 



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′

′
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M
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1

, with n
i R ,1∈′a  and r

i R ,1∈′b . Suppose T
ib′  is 

corrupted by correlated Gaussian noise with iC  covariance matrix, which can be 

factorized into Tii
r

iii
i ddddiag ))(,,,()( 21 UUC L= . And, the uncertainties in T

ib′  are 

independent of those in T
jb′  for ij ≠ . Similar as (21), we employ the following 

objective function: 

 ∑
=

+

∈
′−′′−′=

n

i

T
iiiii

R rn
1

)()(min
,

bXaCbXaX
X

 (25) 

We suppose that 0≠j
id . If not, we can convert the problem to an equality constrained 

least squares problem (24), as in section 3.1.1. Define 
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Tii
r

ii
i ddddiag ))(/1,,/1,/1( 21 UΩ L= . The correlated uncertainties in B can be 

decoupled by:  

 





















′

′
′

=





















′

′
′

T
mm

T

T

T
mm

T

T

Qb

Qb
Qb

XQa

XQa
XQa

MM
22

11

22

11

 (26) 

(26) equals to the following linear system: 
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where ⊗  denotes the Kronecker product of two matrices, and, for a matrix X with r 

columns, 



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














=

r

vec

x

x
x

X
M
2

1

)( . (27) comes from the property of the Kronecker product: 

)()()( XABAXB vecvec T ⊗= . The uncertainties in the right side of (27) have already 

been made i.i.d. Gaussian. Thus, the minimizer to vec(X), and consequently X, can be 

obtained by the LS estimation. 

 

Note the solution of vec(X) from (27), and consequently X, minimizes the objective 

function in (25). 

Proof: we arrange the minimization objective function in (25) as: 

∑
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QbXQaQbXQa

bXQQbX

 

The uncertainties in )( T
iivec Qb′  are i.i.d. Gaussian, so the LS estimate can be applied 

to (27). The LS estimate of vec(X) in (27) minimizes the above objective function, and 

consequently, the related X minimizes the objective function in (25). 
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3.2.1 Constant column in the measurement matrix 

Assume that there is a constant column in the general measurement matrix, as will be 

found in the conic fitting, i.e. [ ]1MM ,′= . In such cases, we can single out the constant 

column in the above updating of S. The last column of S, rs , can be calculated as:  

 1Rs −=rˆ  (28) 

Note, in the updating of each row of R, we convert the minimization problem of (21) as 

an equality constrained LS estimation problem of (24). Consequently, ]1,ˆ[ˆ mSr ′=′i . It 

is clear that the approximated measurement matrix SR̂ , after each updating of R, has 

an exact constant column l (with all ones). This means that )ˆ(Rl span∈ . So, (28) holds 

without any error, i.e. 1sR =rˆ . 

 

3.2.2 Discussion of the convergence of the bilinear approach 

In sections 3.1 and 3.1.1, we studied the updating of R, where the objective function is 

(20). Because of the assumed independence among the uncertainties in different rows 

of W in (2), we can separately update each row of R, minimizing the associated part in 

the sum of (20).  In section 3.2, we jointly updated S in order to incorporate the 

correlation among different columns of W. This way, the objective function in (20) 

decreases after each updating step of R or S. From these observations, we can see that 

the bilinear approach converges, in contrast to the lack of proof of convergence of the 

HEIV or FNS methods. 

 

3.2.3 The algorithm for the case with independent rows in W 

Here, according to the analysis in sections 3.1 and 3.2, we outline our bilinear algorithm, 

which deals with a special class of matrix W: the uncertainties in different rows of W 

are assumed to be independent.  

Algorithm 2: 

Given an input matrix W, factor W as the product of RS as (9). 

1. Initialize the factor R in (9).  

2. While keeping R constant, update the factor S as a whole, according to the 

analysis in section 3.2. 
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3. While keeping S constant, update each row of R, ir′ , according to the analysis 

in section 3.13.2. Note that this step can be done row-by-row. 

4. Calculate the product of SRW ˆˆˆ = . If this is the first iteration, go into step 2; 

else if ε<− ||ˆ|| oldWW , where ε  is a small positive number, end the iteration 

and output R̂  and Ŝ , else store Ŵ  as oldW  and go to step 2. 

 

3.3 A more general update 

In sections 3.1 and 3.2, we have presented how to update R and S, in a linear system, 

where row-independent noises exist. Because the uncertainties in W are 

row-independent, we can update R, row by row; while the update of S can’t be done 

column by column, and has to be jointly considered. 

 

In a general heteroscedastic system, the uncertainties are not row-independent or 

row-independent. Then, the updates of both R and S have to be reduced to solving a 

matrix equation: 

 AX=B (29) 

where rm

m
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

′

′
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=

b
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B
M

, nrR ,∈X . In a general heteroscedastic case, 

the uncertainties in B are characterized by the covariance matrix C for the vectorized 

[ ] 1,
21)(1 mnT

m Rvec ∈′′′= bbbB L . The objective function to be minimized is: 

 Tvecvec ))(1())(1(minˆ BAXCBAXX
X

−−= +  (30) 

Similarly, C can be factorized as T
mnddddiag UUC ),,,( 21 L= , and define 

T
mnddddiag UQ )/1,,/1,/1( 21 L= . 

 

First, we convert the equation of ii bXa ′=′  to T
iin vecI bXa ′=′⊗ )()( . Then, AX=B 

can be rewritten as: 
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and further as 
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The uncertainties in the right side of (32) have been i.i.d. Gaussian if the uncertainties in 

B are Gaussian. Thus, (32) can be solved by the LS method, and the associated X can be 

obtained. 

 

3.4 Disussion of the optimality 

From the above sections, we can see that the optimal solution, at least a local optimal 

solution, is iteratively obtained, if we evaluate the estimate using the objective 

functions in (19) or (20). However, it is not the ML estimate if the uncertainties in W 

are not Gaussian. Because of this, we assumed the uncertainties in W are Gaussian 

when we referred to the ML estimate above. 
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4 Application in conic fitting 

We can reasonably assume that the observed data x is corrupted with i.i.d. Gaussian 

noise. However, the uncertainty within the measurement matrix W often loses this i.i.d. 

Gaussianality. Furthermore, as can be observed in section 3 and in the objective 

function in (19) or (20), the crux of our bilinear approach to the heteroscedastic 

low-rank approximation, and consequently of the heteroscedastic parameter estimation 

problem, is to obtain the covariance matrix of the noise in the carriers w (one row of W). 

In this section, we will study this important issue of modeling the heteroscedastic 

characteristic of the carriers w, by taking the conic fitting problem as a specific example. 

This issue has been analyzed in [22, 23], where the covariance matrix of the carriers 

was obtained.  

 

As in [6, 8, 22, 23], we also assume that each component of the observed x is corrupted 

with i.i.d. and 2σ -variance Gaussian noise, and consequently, that the uncertainties in 

different rows of W are independent. 

 

4.1 Covariance matrix in the conic fitting 

A conic is characterized by the following constraint: 

 022 =+++++ feydxcybxyax  (33) 

The carriers in (33) are 2x , xy , 2y , x, y, and 1. By the linearization, we reformulate 

(33) in the form of (1): 

 0],,,,,][1,,,,,[ 22 =T
iiiiii fcabedyxyxyx  (34) 

The conic fitting problem is to estimate the parameters, a, b, c, d, e and f, from a few (at 

least 6), noisy points. 

 

We can neglect the constant component, by using the techniques suggested in section 

3.1.1 and 3.2.1. So, we only need study the uncertainty model for the first five carriers 

],,,,[ 22 yxxyyx . 
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Suppose we observe x, y, with noise xε  and yε  in them, respectively. The 

uncertainties in the carriers ],,,,[ 22 yxxyyx , introduced by xε  and yε , are: 
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And, ε  can be expressed as: 

 T
yxyx

T
yx ],,,0,0[],[ 22 εεεεεε += Dε  (36) 

where  
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and the subscript “o” denotes the underlying ground truth of the associated quantity. In 

practice, the ground truth is unknown and we use the observed quantities in place of the 

ground truth. So, in the following, we do not use the symbol “o” in the subscript. 

 

The covariance matrix of ε  can be expressed in a matrix form. As in [22, 23], we 

employ the following covariance matrix to characterize the uncertainties in 

],,,,[ 22 yxxyyx : 

 C~

240220
024202

22
2010
0201

2

22

22

2222 σ

σ
σ

σσ =
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

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yxyy
xxyx

xyxyyxxy
yx

xy

 (38) 

If we drop the 2σ  in C~  in (38), we have: 
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 T
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From (39), C has a rank of 2. Then, C can be factored as: Tdddiag UUC )0,0,0,,( 21= , 

and we have 

 )(),( 21 Duu spanspan =  (40) 

 

If the x and y coordinates are much larger than the noise in them (this is true in most 

points), it would hold that  

 )~,~(),( 2121 uuuu spanspan ≈  (41) 

where 21
~,~ uu  are the singular vectors of C~ , associated with the two largest singular 

values. This can be obtained from the matrix perturbation theory, by regarding the 

terms of 2σ  in C~  as some perturbation.  

 

From (35), (36), (39), (40) and (41), the first order uncertainties are modeled by the 

covariance matrix C, and consequently approximately by the first two singular vectors 

of C~ , associated with the two largest singular values. This property will be used in the 

noise level estimation. 

 

4.2 Noise level estimation 

As can be observed in (38), the noise level, σ , in the observed quantities is needed in 

obtaining the covariance matrix of the carriers. Because the second order terms in (36) 

are not Gaussian, we only use their first order uncertainties in estimating the noise level 

in the observed data. Taking the conic fitting as an example, the first order uncertainties 

are T
yx ],[ εεD . 

 

First, we have the following fact 

 22],[)(],[ yx
T

yx
TT

yx εεεεεε +=− DDDD  (42) 

where )1,1()( diagTT =− DDDD .  
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From (35), (36), (39), (40) and (41), the rank 2 approximation of the covariance matrix 

C~ , is approximately C if the x and y  coordinates are much larger than the noise level: 
TDDCC =≈2~ . Moreover, the uncertainties captured by the 2 largest singular vectors 

of C~ , are approximately T
yx ],[ εεD . Combining these observations and (42), we 

employ the following estimate for the noise level: 

 ∑
=

− ′′
m

i

T
iiim 1

2~
2
1 eCe  (43) 

where 2~ −
iC  is the pseudo inverse of the rank-2 approximation matrix of  iC~  in (38), 

and e′  is the ith row of the error matrix E, SRWE ˆˆ−= , with R̂  and Ŝ  as the 

current estimates in the bilinear approach (9). Note, in the calculation of the error 

matrix E, the constant column in W is not included. 
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5 Experimental results 

In this section, we conduct experiments on the conic fitting, to validate the correctness 

of our general theory in section 3. With this aim, we mainly compare our approach with 

other competing approaches to this problem: including FNS [6], HEIV [22, 23], KAN 

[20, 21] and the constrained TLS method [9]. The method in [9] is a specific 

implementation of the TLS method [13], for the conic fitting problem, as pointed out in 

[23], in particular it enforces that the solution is an ellipse.  

 

It has been established in [8], that the HEIV and the FNS are intimately related, with 

only different numerical solution; and it has also experimentally proved that both of 

them have almost same performance, where the AML objective function is employed 

as a criterion. The following experiments suggest that HEIV performs better than FNS 

in the more challenging problems, for example, where the points distribute in a small 

portion (e.g., a quarter) of the ellipse; although they have almost same performance in 

other mildly challenging settings, for example, where the points are from an half ellipse. 

We do not know the reason for this difference in performance. 

 

In all the experiments, we use the following setting: the true ellipse has a major axis of 

size 100 and a minor axis of size 50. Two factors have much influence on the estimates 

of, almost all, the methods mentioned above: the noise level and the span of the points. 

All the methods produce good estimates, indeed estimates which are almost same, if the 

points span the whole ellipse. Because of this, we do not run experiments on the whole 

ellipse.  

 

5.1 Noise level=2 over a half ellipse 

First, we conduct the experiments in the following setting. On the ellipse 

1/sin/cos 222222 =+ brar θθ , a point is determined by the angle θ . In this 

experiment, 100 points are randomly generated on a half ellipse: θ , with a uniform 

distribution, is randomly distributed within ),( 00 πθθ + ; and 0θ  is also uniformly 

located within )2,0[ π . Then, i.i.d. Gaussian noise, with noise level of 2, is added to the 

100 points. The experiment is repeated 200 times (with different random samples). 
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Surprisingly, our bilinear approach performs almost identically to HEIV, FNS and 

KAN, all of which perform better than TLS. 

We experimentally find that the error in the five parameters above is not independent. 

The error in the coordinates of the center and the orientation angle are strongly 

dependent on the estimates of the major length and the minor length. If both the major 

length and the minor length are correctly estimated, the estimates of the other three 

parameters probably have small errors. Because of this observation, we mainly resort to 

the major length and the minor length in the evaluation of the methods, in the following. 

In figure 1, we show the performance of the methods, in contrast with that of the 

Bilinear. We can observe a strong linear correlation between the four approaches: 

HEIV, FNS, KAN and Bilinear. 

 
Table 1: The statistics of the estimated major length, minor length, x and y coordinates 
of the center, and the angle between the major axis and the horizontal axis. The ground 
truth is listed in the first row. For every method, its mean, with its standard deviation in 
the brackets, is listed in each row. Noise =2 over ½ ellipse 
 

 Major(100) Minor(50) Center_X(0) Center_Y(0) Angle(0) 

Bilinear 100.6332 
(4.3768) 

49.9533 
(1.6987) 

-0.1382 
(4.3744) 

0.1164 
(1.7272) 

0.0218 
(1.2630) 

FNS 100.7461 
(4.5155) 

49.9794 
(1.7131) 

-0.1540 
(4.5255) 

0.1194 
(1.7441) 

0.0176 
(1.2746) 

HEIV 100.8303 
(4.4745) 

50.1564 
(1.6956) 

-0.1783 
(4.4852) 

0.1182 
(1.7454) 

0.0235 
(1.2878) 

KAN 100.6214 
(4.5938) 

49.9326 
(1.7042) 

-0.1670 
(4.5990) 

0.0903 
(1.7457) 

0.0328 
(1.2966) 

TLS 93.6993 
(4.3251) 

47.1748 
(1.7675) 

0.2508 
(7.5858) 

-0.3264 
(3.3746) 

0.4267 
(2.6456) 
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(b) 
Figure 1: The comparison of the bilinear approach, with the FNS, HEIV and KAN, TLS. 
(a) is the estimated major length and (b) is the estimated minor length. 
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(a) 

 
(b) 

Figure 2: See the caption of figure 1. Noise =2 over 3/8 ellipse. In two of the graphs, 
there are a significant number of “outlier” results that we have highlighted by drawing 
an enclosing boundary around them. 
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5.2 Noise level=2 over 3/8 ellipse 

The next experiment differs from the above experiment in that now the points are 

randomly distributed on a random 3/8 ellipse. The noise level is still 2. In order to 

present a better comparison, we repeated the experiment 1000 times to obtain the 

statistics (listed in table 2). 

 

Table 2: See the caption of table 1. noise=2 over 3/8 ellipse 

 Major(100) Minor(50) Center_X(0) Center_Y(0) Angel(0) 

Bilinear 103.6820   
(16.0952) 

51.0717 
(6.6344) 

0.4578 
(16.0868) 

0.2702   
(6.9479) 

-0.0461 
(3.2988) 

FNS 100.3527   
(17.4383) 

46.9251 
(9.4859) 

0.4511 
(16.4996) 

0.2104 
(9.7672) 

0.0434 
(3.6045) 

HEIV 103.7216 
(15.5261) 

51.4157    
(6.8837) 

0.3804    
(15.4628) 

0.3439   
(7.2849) 

-0.0313 
(3.3207) 

KAN 104.4603 
(18.5451) 

51.2461    
(7.3436) 

0.3138    
(18.5808) 

0.0375   
(7.8171) 

-0.0042 
(3.5893) 

TLS 73.8776 
(9.0869) 

35.7235    
(5.0653) 

0.1016   
(28.0569) 

-0.2730   
(13.6420) 

-0.2007 
(10.5892) 

 

However, taken alone, the statistics in table 2 do not adequately reflect the performance 

of the methods.  Consider also figure 2 and table 3. We find that the FNS method 

performs much worse than the HEIV, KAN and Bilinear approaches in some cases, as 

can be observed in figure 2. (Note, although there are a few cases in the circles in figure 

2, where the Bilinear, HEIV and KAN also produce “bad” estimates; in many cases, the 

Bilinear, HEIV and KAN produce “good” estimates, as can observed in table 3). The 

problem with the FNS method is that there is no guarantee of convergence. Because of 

the lack of convergence, in some cases, the FNS stops after the first iteration step, and 

consequently, its estimate is the same as the initial estimate, which we chose as the  

TLS estimate for initializing FNS. (This also accounts for the fact that the FNS method 

produces almost 100% ellipses in the following experiments, which are even more 

challenging. Note, the TLS always produces an ellipse because the constraint 

14 2 =− cde  is enforced in the TLS method.) 

 

To summarize: it is difficult to evaluate the approaches in this setting. This is because 

one approach scores better in a few cases, while another approach scores better in other 

different cases. Moreover, as we will see in the more challenging experiments below, 
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some estimates are wildly wrong, (they may not even be ellipses - except when the 

special TLS method is employed, enforcing the elliptic constraint). For these reasons, 

the statistics above, by themselves, can not reliably reflect the performance of the 

approaches. Worse, the wildly wrong estimates make the statistics, like mean, 

misleading in assessing the performance of the methods. For example, from the mean 

of the major length, the FNS is the best method. However, if we examine the figures in 

figure 2 in detail, we find that FNS actually is worse than the HEIV, KAN and Bilinear 

methods.  

 

In order to present a meaningful comparison, we mainly resort to the following 

statistics: for a method, how often does it produce good estimates? As in figure 2, we 

only use the estimated major length and the estimated minor length in evaluating the 

performance, because the accuracy of other parameters is strongly dependent on the 

accuracy of the lengths. More precisely, we regard an estimate as “good” if the error of 

the estimated major, and minor, lengths fall short of 10% or 20% of the true lengths. In 

this example, we regard the estimate good if its major length lies in [90,110] or [80,120] 

and if its minor length lies in [45,55] or [40,60]. From table 3, we can observe that the 

KAN and FNS methods perform a little worse than HEIV and the proposed Bilinear 

method.  

 

To provide an indication of our measure, two examples of “good” estimates are shown 

in figure 3. The good estimates by these four methods are shown in figure 4.  
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Figure 3: Two example of “good” estimates, falling in the 10% and 20% range. 
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Table 3: The “good” estimates for noise=2 over 3/8 ellipse. See the definition of “good” 
estimate in the text. 

 10% 20% Other ellipses Non-ellipse 

Bilinear 532 825 175 0 

HEIV 526 820 179 1 

KAN 470 773 205 22 

FNS 444 686 314 0 

LS 0 1 999 0 
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Figure 4: The “good” estimates in 1000 trials of the Bilinear, FNS, HEIV and KAN 
approaches for noise=2 over 3/8 ellipse. The number after the approaches in the legend 
is how often the associated approach produces “good” estimates in 1000 trials.  
 

5.3 Noise level=1 over a quarter ellipse 

In this experiment the noise level is 1 and the points are from a quarter of the ellipse. 

We also run 1000 trials for this setting. As we discussed above, the statistic of mean and 

standard deviation are not good indexes for comparing. We only list how often the 

approaches succeed in producing “good” estimates in 1000 trials. 
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Table 4: The “good” estimates for noise=1 over 1/4 ellipse. See the definition of “good” 

estimate in the text. 

 10% 20% Other ellipses Non-ellipse 

Bilinear 229 421 569 10 

HEIV 222 425 553 22 

KAN 188 383 481 136 

FNS 125 246 752 2 

TLS 0 0 1000 0 
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Figure 5: The “good” estimates in 1000 trials of the Bilinear, FNS, HEIV and KAN 
approaches for noise=1 over 1/4 ellipse. The number after the approaches in the legend 
is how often the associated approach produces “good” estimates in 1000 trials. The 
“good” estimates are defined by the 10% range. 
 

Although there is a strong linear correlation between the results produced by the HEIV, 

FNS, KAN and Bilinear methods in some settings, as can be observed in figure 1 and 

figure 2; they actually have quite different performance in this more challenging 

environment.  
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Note: even though the HEIV and the bilinear methods seem to have a similar 

performance, in terms of the statistics in table 3 and table 4, they actually have different 

outputs in many cases. For example, although the Bilinear approach and the HEIV 

approach produce a similar result, in terms of how often they produce “good” estimates; 

there are only 142 cases, where both approaches simultaneously produce “good” 

estimates, falling in the 10% range. This means that, in 80 cases, while the HEIV result 

falls in the range of 10%, the Bilinear does not. On the other hand, the Bilinear 

approach produces good estimates in 87 cases, where the HEIV approach does not. 

 

We also comment that, due to the moderately high failure rate, none of these 

approaches can’t be regarded as a solution to the conic fitting problem in the most 

challenging forms (data over a small arc of the ellipse only). . 

 

5.4 Noise level=2 over a quarter ellipse 

In this last experiment the noise level is 2 and the points are from a quarter of the ellipse. 

As in section 5.3, we only list how often the approaches succeed in producing “good” 

estimates in 1000 trials. 

 

Table 5: The “good” estimates for noise=2 over 1/4 ellipse . See the definition of 

“good” estimate in the text. 

 10% 20% Other ellipses Non-ellipse 

Bilinear 88 211 663 126 

HEIV 75 179 577 244 

KAN 29 75 313 612 

FNS 10 26 965 9 

TLS 0 0 1000 0 
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Figure 6: The “good” estimates in 1000 trials of the Bilinear, FNS, HEIV and KAN 
approaches for noise=2 over 1/4 ellipse. The numbers after the approaches in the 
legend are how often the associated approach produces “good” estimates in 1000 trials. 
The “good” estimates are defined by the 10% and 20% range, respectively. 
 

 

We remark that, only on 19 or 92 cases, out of the 1000 trials, both HEIV and Bilinear 

produce “good” estimates, in terms of the 10% or 20% ranges, respectively. 

 

5.5 Comments on the experimental results 

Although convergence to the ML estimate, at least a local optimum estimate, can be 

ensured in the proposed bilinear approach, as discussed in section 3.4, the results are 

not so good as expected. From the table 4 and table 5, the bilinear approach can’t be 

regarded as a good solution to the problem, where the points only span a quarter of the 

ellipse; because it has only about 10-20% success rate of “good” estimates. 

 

There are two possible reasons for this. First, as suggested in section 3.4, only a local 

optimal solution can be ensured in the iteration process. If the initial estimate deviates 
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far from the global optimum estimate, the iteration is possibly trapped in other local 

minimum. In our experiments, we took the TLS result [9] as the initial estimate for the 

bilinear approach. However, it has been suggested in [23] that the TLS result is not 

“adequate to be used as an initial solution.” Also note that we took the TLS result as the 

initial estimate for FNS approach. This possibly accounts for the fact that FNS performs 

worse than HEIV in the challenging settings, as shown in table 4 and table 5. 

 

The second reason, possibly, is due to the specific nature of the conic fitting problem. 

Also as discussed in section 3.4, the optimal solution, measured by (19) or (20), does 

not imply the ML estimate, because the ML optimality applies only when the 

uncertainties in the general measurement matrix W are Gaussian. As we analysed in 

section 4.1, the second order uncertainties are not Gaussian. Strictly, even if we obtain 

the optimal solution, measured by (19) or (20), it is not the ML estimate. 

 

As pointed out in the experiments, although the results, by FNS, HEIV, and KAN show 

a strong correlation with the result by the proposed bilinear approach, there are many 

situations where one method succeeds and other methods fail. There is no clear 

“safe-bet” in this regards. Because of this, we also have to remark that, although that 

the bilinear approach outperforms other competing approaches, by different margins, 

as can be observed in experiments above; we do not claim that the proposed bilinear 

approach can replace the other approaches.  

 

5.6 Question raised 

We have stated that the approaches, including FNS, HEIV, KAN and the proposed 

bilinear approach, can’t be regarded as a good solution to the conic fitting problem, 

when the points only span a small arc of the ellipse. Here, we highlight aspects of the 

problem from another point of view. Figure 7.a shows a “bad” estimate, whose 

estimated major and minor lengths are 230 and 80, respectively. In terms of the 

estimated parameters, this estimated ellipse is wildly wrong, because it is far from the 

truth. However, from figure 7.b, we can find that the estimated ellipse fits the points 

very well. If we separate the fitted ellipse and the underlying ground truth, it is very 

difficult to decide which one fits the noisy points better, as shown in figure 7.c and 

figure 7.d. This suggests that in many cases it may actually be unreasonable to expect 
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the true ellipse to be recovered in such extreme cases of only a small fraction of the 

ellipse containing data. 
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Figure 7: A bad estimate, with details. The solid ellipse is the ground truth, and the 

dotted ellipse is the estimated ellipse. The dots, ‘.’, are the noisy feature points. 

 

MECSE-21-2006: "A Bilinear Approach to the Parameter Estimation of a general ...", P. Chen and D. Suter



 

 

 

 

35

6 Conclusion and future work 

In this paper, we present a general theory of the parameter estimation problem in a 

heteroscedastic linear system.  This theory suggests a bilinear solution method which 

we implemented and tested. The method was shown to perform relatively well, and, for 

ellipse fitting where the data covers a large fraction of the ellipse, the results are good. 

However, none of the methods investigated, including ours, can be considered adequate 

for fitting data from a small arc of the ellipse. As we illustrated in our concluding 

section, it is perhaps true that in at least some of the cases where the methods fail, it is 

unreasonable to expect any method to produce the “true” solution. However, we have 

no way of making such a notion precise at this stage; and testing the “reasonableness” 

of the task will be our future work.   
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Appendix: Equality Constrained Least Squares 
The equality constrained least squares problem is as: 

 ||||min 11
22

bxA
bxA

−
=

 (A.1) 

where nmR ,
1 ∈A , npR ,

2 ∈A , 1,
1

mR∈b , and 1,
2

pR∈b .  

Without loss of generality, assume prank =)( 2A  and np < . Let 







=

0
R

AQ TT
2  be 

the QR factorization of T
2A , where R is a p×p upper triangle matrix. Set 

],[ 211 PPQA =  and 







=

z
y

xQT , where 1,pR∈y , 1,pnR −∈z . With these 

transformations, (A.1) becomes  

 ||||min 121
2

bzPyP
byR

−+
=T

 (A.2) 

where the vector ŷ  can be determined from the constraint 2byR =T . (A.2) becomes 

 ||)ˆ(||min 112 yPbzP
z

−−  (A.3) 

which is an unconstrained LS problem. The solution to the equality constrained LS 

problem (A.1) is:  

 







=

z
y

Qx
ˆ
ˆ

ˆ  (A.4) 
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