
Department of Electrical
and

Computer Systems Engineering

Technical Report
MECSE-12-2007

Petri Net modelling of computer parallelism

T. Ramdas, G. Egan and D. Abramson



Petri Net modelling of computer parallelism
Tirath Ramdas, Gregory Egan and David Abramson

Abstract— Petri Net modelling may be applied to parallel
computer systems. For the purpose of projecting the performance
of a model, there is flexibility: depending on the availability of
computational resources and the desired level of precision, one
may choose between a rigorous state-space based estimation or
one may fall back upon less precise discrete-event simulation
approaches. In this paper a simple Petri Net model of a computer
is evolved, highlighting how concepts such as resource contention
and latency hiding may be incorporated.

I. INTRODUCTION

Petri Nets are a formalism based on Markov processes
that have found applicability in disciplines as diverse as
interactive computer systems to business and industrial process
modelling. Within the computer architecture domain Petri Net
modelling has been applied to analysis of network applications
on the IXP network processor [1], analysis of superscalar
processors [2][3] and many others. One specific task which
Petri Nets are adept at handling is performance modelling.

The goal of this paper is not to present any new/novel
computer architecture findings, nor is it to provide a tutorial
on Petri Net modelling. Our goal is merely to demonstrate that
simple Petri Nets are capable of capturing pertinent structural
information of computer systems, and are therefore capable of
modelling the performance of computer systems. Furthermore,
we favour simple models that exhibit simple behaviour so that
the correctness of their behaviour is obvious. An ancillary con-
tribution of this paper is that some basic ideas are presented on
how to model common computational concepts such as spatial
parallelism (i.e. “replication”), pipelining, shared busses, etc.

A good “vade mecum” style treatment of Petri Nets is
provided in [4]. A comprehensive coverage of the subject from
the perspective of manufacturing systems is presented in [5].
Murata presents a comprehensive overview of Petri Net capa-
bilities in [6]. We will present only a quick “refresher” style
overview of Petri Nets. However, we have attempted to present
the models in the latter sections with adequate explanation; we
hope to leverage one of the greatest strengths of Petri Nets, i.e.
that it is quite an intuitive graphical expression, and therefore
requires little explanation.

We agree with the opinion of Govind and Govindarajan [1]
that models of computer systems ought to take into account
not only the architectural characteristics and structure of the
hardware, but also the specific characteristics and requirements
of the program to be executed. We believe that Petri Net

T. Ramdas {tirath@int19h.com} is with the Center for Telecommunications
and Information Engineering, Monash University.

G. Egan {greg.egan@eng.monash.edu.au} is with the Center for Telecom-
munications and Information Engineering, Monash University.

D. Abramson {david.abramson@infotech.monash.edu.au} is with the Cen-
ter for Distributed Systems and Software Engineering, Monash University.

modelling is especially applicable to application specific ar-
chitecture studies.

This paper starts with an overview of Petri Net formalism.
This overview is accompanied by some introductory examples,
which are accompanied by state-space analysis. We then
compare Petri Nets to other techniques for modelling computer
systems. Subsequently we present increasingly complex Petri
Net models of computer systems: starting with a basic se-
quential model, followed by an embarrassingly parallel model,
followed by a parallel model with bus contention, and finally
a simple two-stage pipeline.

II. PETRI NET OVERVIEW

Petri Nets are a graphical formalism for expression of
discrete event systems, which may exhibit some or all of the
following characteristics [7]:

• Event-driven, i.e. changes in system state are triggered
by event occurrences.

• May be asynchronous.
• There may be some sequential relationship (or precedence

relations) between a subset of events.
• There may be concurrency between a subset of events.
• Conflict may occur (e.g. with shared access to a common

resource).
• The system may exhibit mutual exclusion (e.g. a subset

of events cannot occur at the same time).
• There may be non-determinism in the sequence of event

occurrences.
• The system may suffer deadlock states.
Some of the advantages offered by Petri Net modelling of

discrete event systems include [7]:
• Ease of use; the graphical representation allows human

eyes to quickly observe system dependencies and to focus
on regions of interest in the model.

• It is possible to synthesise supervisory control code for
the target system.

• Ability to perform state-space analysis in order to detect
system deadlock and un-boundedness.

• Performance analysis (e.g. throughput vs. number of
machines) may be conducted through state-space analysis
or simulation.

A Petri Net consists of places, tokens, transitions, and arcs,
which have the following physical significance [7]:

• A place may represent resources (e.g. a source data
structure) or an operation status (e.g. when the machine
is idle).

• A token in a place is interpreted based on the interpre-
tation of the place. When the place represent a resource,
then the token within the place represents the availability
of that resource. When the place is an operation status,

1

MECSE-12-2007: "Petri Net modelling of computer parallelism", T. Ramdas, G. Egan and D. Abramson



then the token within the place indicates that the system
is currently in that state and performing that activity.

• A transition represents events; the firing of a transition
moves tokens from the source place(s) to the destination
place(s). In timed Petri Net models, transitions may
have associated delays/rates. Specifically regarding timed
Petri Nets, Montano et al. [8] describe three roles that
transitions may play:

– Transitions may represent operations; when a tran-
sition is enabled, it commences the operation, and
when it fires the operation is terminated. Time in
this context refers to the amount of time needed to
perform the operation.

– Transitions may represent events; when a transi-
tion fires, the corresponding event is said to have
occurred. Time in this context refers to the time
between event occurrences.

– Transitions may be used to express synchronisation
and control tasks, and exist only to facilitate state-
changes in the model – they therefore lack a tangible
interpretation in the context of the physical system.
Such transitions have no time associated with them.

• An arc is unidirectional, and links a place to a transition
or a transition to a place. Both transitions and places may
have more than one terminating or originating arc.

The basic methodology for constructing a Petri Net model
of a system may be summarised as follows [7]:

1) Operations and resources required for the system to
function are identified.

2) Operations are ordered according to precedence rela-
tions.

3) A place is created to represent each operation.
4) Transitions are placed before and after each place in-

dicating the start and end of the operation. A single
transition may indicate the end of one operation and
the start of another.

5) A place is created for each resource required to perform
the various operations.

6) The initial marking of the system (i.e. the initial alloca-
tion of tokens) is specified.

III. APPLIED PETRI NET MODELLING

The top-level modelling space is rich in tools and method-
ologies. In this section we attempt to argue that Petri Nets
are a good fit for modelling computer systems. Much of our
reasoning is influenced by Zhou and DiCesare [7], Desrochers
and Al-Jaar [5], Cassandras and Lafortune [9], Donatelli et al.
[10] and Montano et al. [8].

We are particularly interested in performance analysis of
the various computer architecture models. We will begin this
section with an example analysis of a simple model. This
presentation assumes basic knowledge of Petri Net modelling,
including an understanding of the basic concepts of places and
transitions. The goal of this section is to solidify introductory-
level Petri Net knowledge, and also to define certain terms that
we will use for the rest of the paper. Experienced Petri Net
practitioners can safely skim through this section.

iiii

i i

Tp

@+10

Ti ToPui

INT

Pub

INT

Puf

1

INT

Fig. 1. Petri Net model of an reliable machine.

i

i i

i

iiii

i i

Tr

@+5

Tf

@+50

Tp

@+10

Ti To

Pd

INT

Pui

INT

Pub

INT

Puf

1

INT

Fig. 2. Petri Net model of an unreliable machine.

Once an illuminating example has been presented, we will
provide a brief (and not at all exhaustive) comparison of Petri
Nets vs other modelling approaches, with the intention of
providing some insight into the relative merits and capabilities
of Petri Net modelling.

A. Analysis Example

In this section, we present an example analysis of a simple
model. Consider the Petri Net model presented in Fig. 1 (for
now disregard the fact that some places are shaded and some
are not). This model corresponds to what we will call a reliable
machine. When the machine is “free” (i.e. when place Puf is
marked – this is the initial state of the machine, where there
is 1 token in place Puf, and no tokens in all other places),
transition Ti fires, which indicates that an unprocessed part
enters the machine input. In terms of the Petri Net model,
the firing of this transition moves the token in place Puf to
place Pub. Now the part undergoes processing (i.e. place Pub
is marked – the machine is “busy”). Once the part has been
processed, transition Tp fires, and the token in place Pub is
moved to place Pui, indicating that the machine is “idle”.
Next transition To fires, which signifies that a processed part is
output from the machine, and the token in place Pui is moved
to place Puf, indicating that the machine is once again “free”
and a new unprocessed part may be input into the machine –
i.e. transition Ti is enabled.

The reliable machine model is not very realistic, and not
very interesting. We shall instead consider analysis of an
“unreliable machine”.

2

MECSE-12-2007: "Petri Net modelling of computer parallelism", T. Ramdas, G. Egan and D. Abramson



Identifier Interpretation
Puf Machine up and free
Pub Machine up and busy
Pui Machine up and idle
Pd Machine down
Ti Part enters machine
Tp Part is processed
To Part leaves machine
Tf Machine breaks down
Tr Machine is repaired

TABLE I
PLACES AND TRANSITIONS OF FIG. 2

Transition Rate Interpretation
Tp tp Peak part processing rate when

up and busy (parts/hour)
Tr tr Machine repair rate (machines/hour)
Tf tf Machine failure rate (failures/hour)

TABLE II
TRANSITION FIRING RATES OF FIG. 2

Fig. 2 depicts the Petri Net model of an unreliable machine
(once again, for now disregard that some places are shaded
and some are not). This machine occasionally breaks down
and needs to be repaired. Of course, while it is broken (and
being repaired) it is not processing anything and therefore is
not productive. The places and transitions of this model have
the interpretations listed in Table I.

Note that transitions Tp, Tf, and Tr have firing rates asso-
ciated with them. In contrast, transitions Ti and To do not –
Ti and To are called immediate transitions. Some application-
specific and intuition-reliant thought must go into the design
of such models. With this example, the reasoning behind the
omission of firing rates for To and Ti is that the time it takes
to load an unprocessed part into the machine and unload a
processed part from the machine is negligible, particularly
compared against the time it takes to process the part. For
the timed transitions, our interpretation is explained in Table
II. 1

Next we extract the embedded Markov chain implicitly
modelled by our Petri Net. Before we begin, we need to
establish a state-naming convention. The Markov chain states
represent Petri Net place-token markings, therefore a common
state-naming convention is to use a Np-tuple (where Np is the
number of places in the Petri Net) where each each element
is the number of tokens in the corresponding place. We will
define our tuple as {Puf, Pub, Pui, Pd}, therefore the initial
marking (where we have a token in Puf and in no other places)
would be {1000}. In other words, the machine is in state 1000
when the machine is up and free.

In this state, only transition Ti is enabled (in contrast, in
state 0100 both transition Tf and Tp are enabled). Transition Ti
has no firing rate associated with it, so it occurs immediately,
placing the machine in state 0100 – i.e. the machine is up and

1Something worth noting at this point is this: as a token travels through
the model, it’s interpretation can change. More precisely, the interpretation
of a token is determined by the place which it occupies – since tokens move
from place to place, clearly the significance/meaning of a token can change
as well.

1000

0100

Ti

0010

Tp

0001

Tf

To

Tr

(a) Embedded Markov Chain.

0100 Tp

0001

TfTr

(b) Reduced Embed-
ded Markov Chain.

Fig. 3. Embedded Markov chain for Fig. 2

busy processing a part. By tracing the possible transitions and
subsequent states, we are generating a reachability tree of the
model, which closely corresponds to the embedded Markov
chain. Fig. 3(a) depicts the embedded Markov chain derived
from our Petri Net model in Fig. 2.

The next step is to identify tangible and vanishing states.
Vanishing states are states in which the system spends zero
time in – i.e. the system transitions out of the state as soon as it
enters it. Consider the state 0010, corresponding to there being
a finished part in the machine, or a token in Pui. The only
transition that may fire is To, which is an immediate transition.
Therefore the machine spends zero time in state 0010; upon
entering state 0010, the system immediately transitions to
state 1000. Therefore, we call state 0010 a vanishing state.
Incidentally, state 1000 is also a vanishing state, since the
system immediately transitions to state 0100. We may then
reduce the Markov chain by eliminating these vanishing states;
we are left with tangible states, and what we call the reduced
embedded Markov chain, depicted in Fig. 3(b). Note that the
tangible states correspond to a token being present in place
Pub or Pd; the two places that are shaded in Fig. 2.

Based on Fig. 3(b), we may now construct the transition
rate matrix, which is defined as follows:

Q =



−
∑ rates leaving

state 0

Rate entering
state 0 from

state 1
. . .

Rate entering
state 1 from

state 0
−

∑ rates leaving
state 1

. . .

...
...

. . .
Rate entering
state n from

state 0

Rate entering
state n from

state 1
. . .


(1)

Therefore, the transition rate matrix for our model in Fig. 2
is:

Q =
[
−tf tr
tf −tr

]
(2)

Let the probability that the machine is in state “0100” (i.e.
machine is “up and busy”) be represented by π1, and the
probability that the machine is in state “0001” (i.e. machine is
“down”) be represented by π2. These are the only two tangible
states in the system, therefore π1 + π2 = 1. To determine the

3

MECSE-12-2007: "Petri Net modelling of computer parallelism", T. Ramdas, G. Egan and D. Abramson



0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35 40 45 50

M
ac

hi
ne

Pr
od

uc
tio

n
R

at
e

Machine Failure Rate, tf

Simulation, tr = 1

♦

♦
♦

♦
♦ ♦ ♦ ♦

♦
Simulation, tr = 5

+

+
+

+

+
+

+
+

+
Simulation, tr = 10

�

�
�

�

�

�

�

�

�
Analytical, tr = 1
Analytical, tr = 5

Analytical, tr = 10

Fig. 4. Machine Production Rate vs. Machine Reliability, for tp = 10.

probabilities π1 and π2 we solve:

Q

[
π1

π2

]
= 0 (3)

We now know the proportion of time that the machine is “up
and busy”, i.e. productive.

Thus far tp has played no part in our analysis, and in fact it
has been revealed that the peak throughput of the machine, i.e.
the rate at which it processes parts when it is up and running,
has no impact on the proportion of time that the machine is
up and running. We can deduce that the machine production
rate is given by T = π1 ∗ tp. Several machine configurations,
in terms of failure rate and ease-of-repair, may be compared,
as we have plotted in Fig. 4 (the analytical curves).

To conclude this analysis, we summarise the procedure
undertaken:

1) Extract embedded Markov chain.
2) Determine reduced embedded Markov chain.
3) Construct transition rate matrix, equation 1,
4) Obtain state probabilities by solving equation equivalent

to example in equation 3.
An alternative procedure would be to employ simulation

instead of rigourous analysis. This can be carried out by
observing the occupancy of places (i.e. the number of tokens
occupying a place) over a long period of simulated time. In this
way we may obtain the ratio of time that the machine is up and
busy. Using this approach yields results that are approximately
the same as the analytically calculated results, although as
we shall see later there are some potential pitfalls to be
aware of, specifically to do with the dynamics of timed-PN.
These simulation results are also plotted in Fig. 4. Simulation
based approaches may be more appropriate for highly complex
Petri Net models which can be quite laborious to process
rigourously; due to state-space explosion the task can become
intractable even with automated computer analysis.

B. Petri Nets vs. Queuing Networks

Queuing Networks (QN) have some difficulty in modelling
system features such as blocking, synchronisation, complex
prioritisation, accurate resource contention, etc. Petri Nets are
inherently capable of incorporating these features, i.e. Petri
Nets have a richer immediate2 expressive range than QN.

On the other hand, one disadvantage of Petri Nets vs. QN is
in terms of performance analysis. QN have a more intuitive and
direct significance in terms of performance; metrics such as
throughput and utilisation are directly observable with queues.
Nevertheless, such metrics are obtainable with Petri Nets,
albeit with a bit more work. Petri Nets fall back upon their
underlying Markov chain foundations for performance mod-
elling. Once a Petri Net model has been developed, complete
with initial state marking, a “reachability tree” is generated
from which an equivalent Markov chain can be obtained and
analyzed, yielding the desired performance metrics. This will
be illustrated through an example later.

C. Petri Nets vs. Process Algebra

Donatelli et al. present a comparison of Generalised
Stochastic Petri Nets (GSPN) vs. Process Evaluation Process
Algebra (PEPA) [10]: their findings suggest that both methods
are roughly equal in terms of capability and required effort.
However, in our opinion one significant disadvantage of PEPA
and process algebras in general is that the mathematical
expression is not intuitive for non-practitioners. Petri Nets, on
the other hand, have a graphical expression that is arguably
intuitive for humans. Although some basic explanation of the
significance and meanings of the various artifacts (such as
tokens, places, and transitions) is required, on the whole Petri
Nets may be used to convey structural information about a
system to an audience from diverse disciplines.

D. Petri Nets vs. Finite State Machines

The key advantage Petri Nets have over Finite State Ma-
chines (FSM) is in terms of ease of evolution. By allowing
a variable number of tokens within each place, a Petri Net
can represent many different states within the same structure.
In contrast, a FSM represents a fixed number of states and
must be completely modified every time there is a change
to state information. This means Petri Nets have a longer
useful life-span, are more easily evolved, and are more readily
parameterised.

IV. PETRI NET MODELLING OF COMPUTER SYSTEMS

In this section we elaborate upon the application of Petri Net
(PN) modelling specifically to computer systems, particularly
for the purpose of performance modelling. We will employ an
evolutionary approach – we will start with a very primitive
model, and we will introduce elaborations until we have
developed a reasonably sophisticated model.

2We use the qualifying term “immediate” here to concede the fact that a
complex queuing network may be perfectly capable of capturing all these
features, however such a model would certainly not be intuitive to design (or
read). With Petri Nets, such features are more immediately expressible, and
therefore more intuitive.

4

MECSE-12-2007: "Petri Net modelling of computer parallelism", T. Ramdas, G. Egan and D. Abramson



Load ProcessCPU

Fig. 5. Simple PN model of a computer.

For the rest of this paper, the following conventions apply:
1) (X) – X is a place, 2) [Y] – Y is a transition.

A. Flawed Basic Timed Model

Consider Fig. 5, which we shall mull as potentially the
most primitive and simplified PN model of a computer system.
[Load] represents the loading of data into the CPU. Subse-
quently, once all required data has been loaded into the CPU
(indicated by a single token in (CPU)) the transition [Process]
may fire.

Unfortunately, from a timed-PN simulation standpoint, this
model is flawed. There are delays associated with each
transition; specifically tLoad with [Load] and tProcess with
[Process], which broadly correspond to the memory access
rate and the CPU processing rate. Once we associate these
timing parameters to the model, the simulation fails – [Load]
fires repeatedly, [Process] never fires, and tokens pile up in
(CPU). To understand this behaviour, we must understand the
dynamics of timed-PN.

A timed model has a global clock. When a timed transition
fires, it places tokens in it’s target places, and these tokens
have an associated timestamp, but the global clock is not
incremented. Recall that a transition is fire-able when all it’s
source places have tokens. With timed-PN models there is an
additional constraint: the global clock time must be ≥ the
timestamp of the token for the presence of that token in the
corresponding place to enable the transition. Only when no
transitions are fire-able does the global-clock increment.

Back to our example problem, since [Load] is always fire-
able, the global clock never increments. Since [Load] is timed,
each token it places in (CPU) is timestamped with tLoad,
which means [Process] is only fire-able when the global
clock = tLoad, but of course the global clock is always zero,
hence the observed behaviour. A physical interpretation of this
phenomenon is difficult to imagine, but one possibility is that
the CPU loads an infinite amount of data through a bus of
infinite bandwidth, with rate tLoad. Processing this infinite
volume of data occurs at a rate of tProcess, however by virtue
of the data-set being infinite, the full data set is never available
in the CPU, and therefore processing cannot occur.

This unbounded behaviour is clearly undesirable, therefore
we must limit the number of tokens that may be placed in
(CPU) in any given time. To do this we must associate (CPU)
with an inhibitor arc, or alternatively we may introduce an
anti-place, which is simply a place with a particular configu-
ration. We have in fact already seen examples of anti-places;
recall figures 1 and 2 of the Reliable Machine and Unreliable
Machine. The number of parts processed by the machine in any
given time was limited to one; this was achieved with (Puf),
which indicates that the machine is “up and free”. When (Pub)
has one token, (Puf) has none and therefore [Ti] cannot fire.

Load CPU

BOOL

b
Process

b

@+4 @+10

BOOL

1`true

bb

BOOL

500`true

b

CPUfData

Fig. 6. Improved simple PN model of a computer.

Conversely, when (Puf) has one token, (Pub) and (Pui) are
empty, indicating that the machine is empty and ready for a
new part, and hence [Ti] is fire-able.

B. Improved Basic Timed Model

The solution to the flaw described in the previous section
now appears obvious; we must introduce an anti-place to limit
the number of tokens that can be placed in (CPU).

In addition, we will make one more modification. All pre-
vious models assumed an infinite amount of work to be done;
this is certainly a reasonable assumption to make, however we
will now introduce a finite amount of work to be done so that
we can directly compare the model time to assess different
models. We can implement this by introducing a place with
an initial number of tokens corresponding to the amount of
work to be done. This is all illustrated in Fig. 6. (CPUf)
has an initial marking of 1; this means (CPU) can only have
one token at most in any given time, effectively limiting our
processor to working on one workload at a time. (Data) has
an initial marking of 500, which means at the start of the
simulation there are 500 tokens in (Data), which are depleted
by [Load]; once all the tokens are exhausted, [Load] can no
longer fire, and eventually no other transition will be fire-able
either, thus ending the simulation. This effectively means that
the computer halts after all the work has been done.

With this model, memory access and processing occurs
sequentially, therefore the performance behaviour is very
simple, as is illustrated in Fig. 7. Note, however, that our
performance metrics in this case are quite different from that
discussed in section III-A; in fact while we associated rates
with the transitions in the unreliable machine example, in this
primitive computer model we have associated delays with the
transitions. This is acceptable: the important thing is to remain
consistent so that meaningful analyses may be conducted.

C. Multiple CPUs

We can easily modify our model of a computer system
as presented in Fig. 6; all we have to do is change the
initial marking associated with (CPUf). By setting the initial
marking (i.e. initial number of tokens) of (CPUf) to 2, we are
effectively saying that there are 2 CPUs available.

5

MECSE-12-2007: "Petri Net modelling of computer parallelism", T. Ramdas, G. Egan and D. Abramson



0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20 25 30 35 40 45 50

O
ve

ra
ll

C
om

pu
ta

tio
n

Ti
m

e

Processing Time, tProcess

tLoad = 4
tLoad = 8

tLoad = 12

Fig. 7. Primitive computer model performance.

100

1000

10000

1 10

O
ve

ra
ll

C
om

pu
ta

tio
n

Ti
m

e

Number of CPUs

♦

♦

♦
♦

♦
♦

♦ ♦ ♦ ♦

Fig. 8. Primitive parallel computing model performance.

In doing so, we are modelling an embarrassingly parallel
computation, and the results are embarrassingly simple and
predictable, as illustrated in Fig. 8.

D. Constrained Bus

We now attempt to incorporate a shared constrained memory
bus into our model, and our proposal is illustrated in Fig. 9.

The places (CPU), (CPUf) and (Data) should be familiar, as
should the transitions [Process] and [Load]. The place (BUS)
represents the data bus shared between all the CPUs, while the
place (BUSf) has a role similar to that of (CPUf); it effectively
constrains the capacity of the bus. If we decide that a marking
of 1 in (CPUf) corresponds to 1 CPU in the system, then a

1000

10000

1 10

O
ve

ra
ll

C
om

pu
ta

tio
n

Ti
m

e
Number of CPUs, with tProcess < tLoad

Bus capacity=1

♦ ♦ ♦ ♦

♦
Bus capacity=2

+

+ + +

+
Bus capacity=3

�

�

� �

�
Bus capacity=4

×

×

× ×

×

Fig. 10. Constrained bus parallel computing model performance, with
dominating load time.

marking of 1 in (BUSf) corresponds to the bus capacity to
feed 1 CPU. Data is placed onto the bus through the firing
of [Access], which is fire-able only when there is a token in
(Data) – which means we have data to process – and a token
in (BUSf) – which means the bus can sustain the transfer.

Now the behaviour of our model is sensitive to quite a few
parameters. Obviously the number of CPUs and the capacity
of the bus are critical factors, however the processing delay
tProcess and loading delay tLoad are also significant.

We first model the system with tLoad = 8 and tProcess = 1,
i.e. tProcess < tLoad; this implies that the program is such
that very little computation is performed with each piece of
data. The performance of the model under these parameters is
illustrated in Fig. 10.

When we set tProcess = 20, then tProcess > tLoad and we
observe different behaviour, as illustrated in Fig. 11. In this
case, the system spends more time crunching data rather than
fetching data, therefore there is less pressure placed on the
bus. One interesting and potentially valuable finding revealed
here is that with workloads that exhibit this 20:8 ratio of
computation to communication, we can achieve near-linear
speedup with 8 CPUs with a bus with sufficient bandwidth to
sustain 3 CPUs; any additional bandwidth provisioned would
be wasted.

E. Pipelined Memory-Processor Model

Pipelining is a means of latency hiding, and we will now at-
tempt to model this phenomena. In our model we will assume
two discrete pipeline stages; stage 1 performs memory reads,
and stage 2 performs computation. This model is conceptually
similar to the parallel DMA access method employed by the
Cell BE SPE Memory Flow Controller [11].

We will start from the basic timed model presented in
section IV-B. Our elaborated model is presented in Fig. 12

6

MECSE-12-2007: "Petri Net modelling of computer parallelism", T. Ramdas, G. Egan and D. Abramson



b

b

b b

bb

@+1

Process

@+20

Load

BOOL 8`true

BOOL

BOOL

b
BOOL

500`true

@+8

Data

CPU

BUS

b

BUSf

b

BOOL

4`true

Access

CPUf

Fig. 9. Constrained bus parallel computer model.

bb

b

b

b

bbb

b

bb

b

b
Process

@+50

Ready1 Ready2Load

@+12

pB1

BOOL

S2f

N`true

BOOL

S1f

N`true

BOOL

S2

BOOL

Data

500`true

BOOL

CPUf

(2*N)`true

BOOL

S1

BOOL

Fig. 12. Simple two-stage pipelined processor model.

The places (S1) and (S2) are the two stages in the processor,
and (pB1) represents a buffer between the two stages. (S1f)
and (S2f) are anti-places. N represents the number of cores in
the processor – for our discussion we will assume that N = 1.
The two stages perform two distinct operations in parallel, i.e.
[Load] and [Process]. The transitions [Ready1] and [Ready2]
are merely control transitions, which fire to indicate when the
stage is free for new work.

The performance curves estimated from this model are
presented in Fig. 13. From the Fig. we can see that once the
processor time tProcess exceeds the memory load time tLoad,
the cost of the loads is effectively hidden.

V. CONCLUSION

Petri Net modelling is an appropriate formalism for the
modelling of computer systems. It is a flexible approach,
providing rigourous Markov chain modelling when required,
and also simulation-based techniques for situations which
suffer state-space explosion.

One aspect not explicitly handled was incorporation of
application characteristics. Doing so may be as simple as
tuning tLoad and tProcess appropriately.

We have shown how to model several basic concepts and
architectural features in high-performance computer systems,
such as pipelining, shared busses, and replication. These
primitives may be extended and used to model larger, more
realistic, and more complex systems.

REFERENCES

[1] S. Govind and R. Govindarajan, “Performance modeling and architecture
exploration of network processors,” in QEST’05: Proceedings of the
Second International Conference on the Quantitative Evaluation of
Systems, 2005.

[2] F. P. Burns, A. M. Koelmans, and A. V. Yakolev, “Analysing superscalar
processor architectures with coloured Petri nets,” International Journal
on Software Tools for Technology Transfer, vol. 2, no. 2, pp. 182–191,
1998.

[3] F. Burns, A. Koelmans, and A. Yakovlev, “WCET Analysis of Su-
perscalar Processors Using Simulation With Coloured Petri Nets,” The
International Journal of Time-Critical Computing Systems, vol. 18, pp.
275–288, 2000.

7

MECSE-12-2007: "Petri Net modelling of computer parallelism", T. Ramdas, G. Egan and D. Abramson



1000

10000

100000

1 10

O
ve

ra
ll

C
om

pu
ta

tio
n

Ti
m

e

Number of CPUs, with tProcess > tLoad

Bus capacity=1

♦

♦

♦ ♦

♦
Bus capacity=2

+

+

+

+

+
Bus capacity=3

�

�

�

�

�
Bus capacity=4

×

×

×

×

×

Fig. 11. Constrained bus parallel computing model performance, with
dominating processing time.

0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20 25 30 35 40 45 50

O
ve

ra
ll

C
om

pu
ta

tio
n

Ti
m

e

Processing Time, tProcess

tLoad = 4, pipelined
tLoad = 4, unpipelined
tLoad = 12, pipelined

tLoad = 12, unpipelined
tLoad = 0, unpipelined

Fig. 13. Pipelined processor model performance.

[4] L. M. Kristensen, S. Christensen, and K. Jensen, “The practitioner’s
guide to coloured Petri nets,” International Journal on Software Tools
for Technology Transfer, vol. 2, no. 2, pp. 98–132, 1998. [Online].
Available: citeseer.ist.psu.edu/kristensen98practitioners.html

[5] A. A. Desrochers and R. Y. Al-Jaar, Applications of Petri Nets in
Manufacturing Systems: Modeling, Control, and Performance Analysis.
IEEE Press, 1995.

[6] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[7] M. Zhou and F. DiCesare, Petri Net Synthesis for Discrete Event Control
of Manufacturing Systems. Kluwer Academic Publishers, 1993.

[8] L. Montano, F. J. Garcia, and J. L. Villarroel, “Using Time Petri Net
Formalisn for Specification, Validation, and Code Generation in Robot-
Control Applications,” International Journal of Robotics Research,
vol. 19, no. 1, pp. 59–76, 2000.

[9] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems. Kluwer Academic Publishers, 1999.

[10] S. Donatelli, J. Hillston, and M. Ribaudo, “A comparison of Performance
Evaluation Process Algebra and Generalized Stochastic Petri Nets,”
in Proceedings of the 6th International Workshop on Petri Nets and
Performance Models, 1995.

[11] M. Gschwind, “Chip multiprocessing and the cell broadband engine,” in
CF’06: Proceedings of ACM Computing Frontiers 2006, 2006, pp. 1–7.

8

MECSE-12-2007: "Petri Net modelling of computer parallelism", T. Ramdas, G. Egan and D. Abramson


