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Abstract

This paper describes a method by which sus-
picious, covert human movements can be dis-
tinguished from ordinary activity. A network
of fixed cameras observes an arbitrary indoor
environment. The positions of moving, visible
entities are separately tracked in a global pla-
nar map using multiple particle filters. Some
objects can be visually identified as friendlies
(guards). The motion of other objects is classi-
fied as covert (suspicious) or overt (normal) us-
ing two metrics that measure overall visibility
of the chosen route and visibility with respect
to guards’ position. In other words, the system
measures to what extent a person is trying to
hide from the guards. This paper is the latest in
a series of related works that together describe
how a network of fixed cameras can learn to
identify intruders and guide mobile robots to
intercept.

1 Introduction

We introduce covert behaviour detection as a sub-system
in the context of a larger system being developed by
the authors: a networked surveillance system. A mo-
bile robot, equipped with a wide-angle camera and a
laser range finder comprises the mobile component of
the surveillance system and is assisted by fixed cameras
connected wirelessly to it. The robot is able to localize
itself in a map of its environment using on-board sens-
ing, and at the same time, the overhead cameras are able
to track the robot as it moves about. This simultane-
ity of location information, both on the ground plane of
the robot, and in the image plane of the camera, lends
itself to the autonomous construction of a transforma-
tion mapping between the two planes [Rawlinson et al.,
2004]. Once this map is constructed, any point in the
image plane is transformable to its corresponding point
on the ground plane. When an intruder enters the en-
vironment, he/she is tracked by the overhead camera,

which then passes on the ground plane coordinates of the
intruder to the robot, which proceeds to pursue this tar-
get. Once the robot’s on-board sensors are within range
of the intruder, they take over and the robot continues
to give chase using its onboard sensing [Chakravarty et
al., 2006].

The ability of the stationary cameras to determine the
ground-plane coordinates of entities detected in their im-
age planes makes possible the tracking of these entities
on a map of the ground plane. The tracking is done using
particle filtering, one particle filter per target. The tra-
jectories of persons moving through the area is recorded.
The visibility of the trajectory of an intruder is deter-
mined with respect to a sentry who is patrolling the en-
vironment. This visibility, calculated at each point on
the intruder’s trajectory is determined by tracing rays
outward from the position of the sentry till they hit ob-
stacles.

The method of determining the covert/overtness of hu-
man paths is the Dark Path algorithm [Marzouqi and
Jarvis, 2006], hitherto used in the simulation of robot
wargames. It measures, given a map of the environment,
start and goal locations, the most covert route a robot
can take through it.

Our proposal is to concentrate on analysis of the way
the position of human targets changes over time, rather
than scrutiny of characteristics of individuals’ appear-
ance, gait, size or shape. We also propose analysis of
targets positions with respect to each other - how do the
targets interact? In the “surveillance” literature, this
topic is less comprehensively researched than recognition
of individuals’ characteristics but some pertinent related
work on analysis of training data is described below.

[Hu et al., 2004] train a neural network using normal
trajectories and are subsequently able to use the network
to detect trajectories that deviate from the learnt nor-
mal ones. This works well in situations where a large
body of human traffic behaves consistently, as is often
the case in public transport stations. However, it can-
not be applied in low-traffic secure environments, where
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no ordinary behaviour can be learnt.
[Brand et al., 1997; Natarajan and Nevatia, 2007] use

computer-synthesized agents to simulate the trajectories
of people meeting and interacting with each other. These
agents are used to train Coupled Hidden Markov Models
and Coupled Hidden Semi Markov Models, mathemati-
cal modelling frameworks for classifying behaviours like
“Follow”, “Approach, Talk and Continue Separately”,
“Approach, Talk and Continue Together”, etc.

[Stauffer and Grimson, 2000] classifies blobs tracked
over time using image position, speed, direction and size.
In contrast to Hidden Markov Models, which need a se-
quence of observations, this method can categorize a sin-
gle observation into one or more classes: cars, trucks,
pedestrians on the path, lawnmowers on the lawn, etc.

[Dee and Hogg, 2004; 2005] have come up with a sys-
tem that does not use statistical models to determine the
most commonly taken routes, are able to explain trajec-
tories not previously seen and can deal with moving ob-
stacles like cars in a car park. Their first system [Dee and
Hogg, 2004] determines the goal-directedness of a person
by using the direction of the person’s motion, along with
a model of possible goal locations for the person at each
point on his/her trajectory, given the location of obsta-
cles in the scene. Obstacles are marked off manually in
the image plane, and like our work, ray-tracing is used
to find out a polygonal area of visibility in an arc of
one radian on either side of the direction of motion of
the tracked entity. Obstacle vertices falling within this
polygonal area are marked as goals. In subsequent work
[Dee and Hogg, 2005], they outline an algorithm that
uses a modified Hausdorff measure to compare points on
the trajectory followed by a person with points on tra-
jectories to known goal sites generated by the system.

All previous work in literature is based on building up
a database of likely flows. The motion of a suspected
intruder with respect to a guard as a defining character-
istic for “suspiciousness” is what is novel in our work.
The use of the Dark Path algorithm for classification of
human behaviour is also a novel contribution.

The rest of the paper is divided as follows: Background
modelling and shadow removal is used to extract the po-
sitions of entities in the camera images and this is dis-
cussed in section 2. Section 3 details the transformation
of image plane coordinates to a map of the ground plane.
The tracking of multiple targets on the ground plane is
discussed in section 4. Metrics for the detection of covert
behaviour are introduced in 5. Section 6 details the ex-
periments performed.

2 Background Modelling and
Foreground Extraction

N frames of the training phase are used to create, for
each pixel, a bi-modal distribution [Haritaoglu et al.,

2000] of the background that consists of 3 parameters:
the minimum pixel value N(x), the maximum pixel value
M(x) and the maximum inter-frame difference value
D(x) where the pixel location is indicated by the index
x.

During the background subtraction (BGS) process, a
pixel x from image It is segmented as foreground if:

|It (x)−M (x) | ≥ kD (x)∨|It (x)−N (x) | ≥ kD (x) (1)

where the modelled variance was empirically deter-
mined to be 4.

2.1 Shadow Removal
The appearance of shadows and highlights in video leads
to the inaccurate extraction of sillhouettes, and conse-
quently the inaccurate tracking of blobs. It is essential
that the segmented blobs be tightly restricted by their
bounding boxes for a good image plane to ground plane
transformation (described in section 3). Highlights and
shadows cause an increase, and decrease, respectively of
the intensity of the observed image region compared to
the background model. A simple method to check this,
is to find out if the intensity of a foreground pixel It at
time t, is within a threshold of the background pixel Ib
at the same location (the background pixel value is the
mean intensity over the training frames) [Schindler and
Wang, 2006]. Thus, the condition for foreground pixel
It to be a shadow is:

β ≤ It/Ib ≤ γ (2)

where β and γ have been empirically determined to be
0.8 and 1 respectively.

3 Homography

The image to ground plane mapping is done in this pa-
per by using homography [Criminisi et al., 1999] based
on manually marked corresponding measurements be-
tween the image and ground planes. Let the points in
the ground plane be represented using the homogeneous
vector X = (X,Y, Z), and their counterparts in the im-
age plane by x = (x, y, 1). Under perspective projection,
the points are related by:

X = Hx (3)

Written in vector notation, we have: X
Y
Z

 =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

  x
y
1

 (4)

From which, we get the following simultaneous equa-
tions:

X = h11x+ h12y + h13 (5)
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Y = h21x+ h22y + h23 (6)

Z = h31x+ h32y + h33 (7)

Letting Z = 1 in equation 7:

h31x+ h32y + h33 = 1 (8)

Multiplying equation 8 by X and Y , we get:

h31xX + h32yX + h33X = X (9)

and
h31xY + h32yY + h33Y = Y (10)

Equation 5 can be re-written as:

h11x+ h12y+ h13 + 0.h21 + 0.h22 + 0.h23 −X = 0 (11)

Equation 6 can be re-written as:

0.h11 + 0.h12 + 0.h13 +x.h21 + y.h22 +h23−Y = 0 (12)

Substituting the value of X from equation 9 into
equation 11:

h11x+ h12y + h13 + 0.h21 + 0.h22 + 0.h23 − xXh31

− yXh32 −Xh33 = 0
(13)

Substituting the value of Y from equation 10 into
equation 12:

0.h11 + 0.h12 + 0.h13 + x.h21 + y.h22 + h23 − xY h31

− yY h32 − Y h33 = 0
(14)

Equations 13 and 14 can be re-arranged to give the
homogeneous equation system for n points Ah̃ = 0̃

where A = xi yi 1 0 0 0 −xiXi −yiXi −Xi

0 0 0 xi yi 1 −xiYi −yiYi −Yi

...


2nx9

and h̃ =



h11

h12

h13

h21

h22

h23

h31

h32

h33


The elements of the transformation vector h̃ are ob-
tained from the eigen vector corresponding to the least
eigen value of ATA. For each pair of points on the image

plane and the ground plane, we fill up two rows of the
matrix A, which becomes a 2nx9 matrix, where n is the
number of points. The Singular Value Decomposition
(SVD) of A:

A = UDV T (15)

results in the eigenvalues being arranged in decreasing
order along the diagonal of the matrix D and the corre-
sponding eigenvectors along the columns of the matrix
V . The values of the eigenvector associated with the
smallest eigenvalue make up the values of the vector h̃.
With four points (n = 4), h̃ becomes the null-vector of A,
i.e., the column of V associated with a zero-valued eigen-
value in D. The elements of h̃ are re-arranged to form
the elements of the matrix H in equation 3. The ground
plane location corresponding to any arbitrary point in
the image plane can now be found using this equation.
Note that one of the cameras is a wide-angle camera and
the OpenCV library was used to get the distortion pa-
rameters of the camera and undistort the images before
the aforementioned transformation procedure.

4 Multiple Target Tracking

The Particle Filter tracks a target by maintaining a set
of probability-weighted particles which approximate the
target probability density function. Arbitrary densities
(not restricted to unimodal or Gaussian as in the Kalman
Filter) can be tracked, and the larger the number of
particles, the better this approximation of target den-
sity. One particle filter is initialized for each target. The
complexity of this approach is linear in the number of
targets: O(Nn) where N is the number of targets and n
is the number of particles per target.

For each target, the problem, which is one of estimat-
ing the current pose xt = [xt, yt, ]

′
of the target in a map

of the environment, given a history of measurements and
past pose esimates, can be solved by using Bayesian Rea-
soning.

This approach assumes that the environment is
Markov, i.e., a future pose is independent of all prior
poses, conditional on the fact that the current pose is
known. The background subtraction followed by im-
age plane to ground plane transformation supplies the
ground plane coordinates of measurements to the track-
ing algorithm, starting at time 0 upto time t : (y0...yt).
The pose of the target at time t is estimated using the
posterior probability density function, called the belief,
conditioned on the data:

Bel (xt) = p (xt|y0...t)
= p (xt|yt, yt−1, yt−2, ...y0) (16)

Equation 16 can be transformed by Bayes’ rule to give
the following recursive update equation:
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Bel (xt) =
p (yt|xt, yt−1, ...y0) p (xt|yt−1, ..., y0)

p (yt|yt−1, ..., y0)
(17)

Using the Markov assumption that measurements yt

are conditionally independent of past measurements,
given the knowledge of state xt, we get:

Bel (xt) =
p (yt|xt) p (xt|yt−1, ..., y0)

p (yt|yt−1...y0)

= ηtp (yt|xt)
∑
xt−1

p (xt|xt−1, yt−1, ...y0) p (xt−1|yt−1, ...y0)

= ηtp (yt|xt)
∑
xt−1

p (xt|xt−1, yt−1, ...y0) p (xt−1|yt−1, ...y0)

= ηtp (yt|xt)
∑
xt−1

p (xt|xt−1)Bel (xt−1) (18)

where ηt = 1
p(yt|yt−1,...y0) is a normalizing constant that

ensures the probabilities sum to one.
Equation 18 is the basis for the particle filter algo-

rithm, which cycles through the following steps:

1. Predict
Particles are predicted based on a motion model
(first term within summation sign in equation 18).

p (xt|xt−1) = Axt−1 + νt (19)

where A is the state transition matrix and ν is the
system noise.

2. Update
Particles are updated using a perception model (sec-
ond term on right hand side of equation 18).

p (yt|xt) =
1

σm

√
2π
e
−(∆m)2

2σ2
m (20)

where ∆m is the distance between the poses of the
particle and the associated measurement. σm is the
standard deviation of the measurement noise.

3. Resample
Particles are resampled according to their proba-
bilistic weights. Particles with higher weights have a
higher probability of getting propagated to the next
iteration. Systematic resampling [Arulampalam et
al., 2002] with O(n) complexity is used, where n is
the number of particles per filter.

4.1 Tracking Mechanism
N particle filters are used to track N targets. Each filter
consists of a set of n particles. Each particle at time t has
a state xt , which evolves according to state transition
equation 19. Each particle also has a probabilistic weight
associated with it. For each filter, apart from the particle
states and their associated weights, the following data is
maintained:

1. The mean position of all the particles in the filter.

2. The standard deviation of the particles from the
mean position.

3. The number of times in the past frames that the fil-
ters cumulative un-normalized probability has fallen
below a threshold.

4.2 Data Association
The data association problem, one of associating the set
of latest measurements with filters, is achieved in a mod-
ified nearest neighbour fashion. A measurement is as-
signed to the filter with the closest mean position, only
if it is within 1.5 standard deviations of that filter. Mea-
surements already associated with a filter are not asso-
ciated again with any other filter, in what is known as
a “hard” assignment. If a “soft” assignment procedure
is followed, it has been observed from simulations, that
one target tends to capture more than one particle filter
when the filters are close together.

Given that the measurements, i.e., the ground plane
locations of the targets are inferred from their camera
image plane locations, it seems logical to utilize colour
information in disambiguating targets that are close to-
gether or those that have disappeared in one camera, to
appear in another. However, the colour responses of the
two cameras used in the experimental setup were quite
different, and including colour information to associate
tracked targets to new measurements led to frequent loss
of target track.

Once a measurement is assigned to a filter, the weights
of all the particles in that filter are updated based on
their distances from the measurement, as in equation
20.

4.3 Track Initialization
The track initialization procedure initializes a new par-
ticle filter around un-associated measurements that have
been clustered over a few frames. Refer to [Chakravarty
and Jarvis, 2005] for more details on the clustering pro-
cedure.

4.4 Track Deletion
The track deletion procedure uses the cumulative unnor-
malized probability, which is maintained for each filter
as a measure of its confidence in tracking a target. If this
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Figure 1: Visibility map with respect to sentry

Figure 2: Generalized visibility map

cumulative weight falls below a pre-defined threshold for
a majority of the last τ frames, then the particular filter
is deactivated.

4.5 Track Continuation
The track continuation procedure implements the follow-
ing steps (discussed earlier in this section):

1. Predict

2. Update

3. Re-sampling

5 Covert Behaviour Detection Metrics

Two metrics are used to determine the visibility of a
tracked suspect at each point on his trajectory. These
are described in the following sub-sections.

5.1 Visibility Map with respect to Sentry
A visibility map (Figure 1) is used to detect the covert
behaviour of a suspect with respect to a sentry. It is the
extent of a sentry’s field of vision, given his/her position
on a map of the environment. Ray-tracing is used to find
out the visibility map of the sentry (rays are extended
in each direction around the sentry’s current position
till an obstacle is hit; viewing angles are limited to 90

degrees on either side of the sentry’s motion direction)
at each point on his/her beat. Once an intruder is de-
tected (the 2nd entity to enter the arena is assumed to
be the intruder), if he/she is within the visibility map,
the proximity to sentry is recorded at that point on the
intruder’s ground plane trajectory.

5.2 Generalized Visibility Map

A generalized visibility map (first used by [Marzouqi and
Jarvis, 2006] for covert path planning for a mobile robot)
is constructed to measure the visibility of the tracked
suspect with regard to his environment, regardless of
the position of the sentry. Rays are traced until they
hit obstacles in all directions around each unoccupied
cell in a map of the environment. The number of cells
that are visible from the current cell are recorded for
each cell in the environment. This is a time-consuming
method, but can be done offline. For each position in the
environment, a readout from this map (shown in Figure
2) gives the generalized visibility of that spot.

6 Experiments

An arena was set up with obstacles to hide behind. All
parts of the arena were visible with either one of two
cameras mounted overhead. The map of the arena and
an image to ground plane mapping for each camera was
provided to the system. Two actors were employed to
play the roles of the sentry and intruder. Sixteen exper-
iments (one experiment being a traversal of the intruder
from one point in the arena to another) were recorded.
The sentry was asked to patrol the environment at a
relatively constant speed in all the experiments. The in-
truder was asked to pursue a covert path in 8 of the runs,
and a normal path in the other 8.

Instructions for the covert path were as follows: “Move
from the START to the GOAL without being seen by
the guard. You can crouch and hide behind obstacles.
Walk/crawl slowly: You must not run. Instead, plan
your route to avoid the guard and exploit his blindspots.
You can take as long as you like. The guard will repeat
his patrol route continuously. Try to minimise any view
of you the guard has, but don’t worry if you’re seen
temporarily. Just keep going.”

Instructions for the overt path: “Move from the
START to the GOAL. Walk slowly: you must not run.
You can take as long as you like. You may encounter
another subject during your movement. You can choose
any route you like.”

A snapshot of the target tracking is displayed in Figure
3. Video streams from the 2 cameras show intruder and
sentry positions, and particle filters track their respective
positions on a map of the ground plane. Uncertainty
ellipses for each filter are displayed.
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Figure 3: Snapshot of target tracking: Intruder and sen-
try positions in camera images and arena map. Particle
Filter ellipses show tracking uncertainty in each dimen-
sion

Figure 4 displays the visibility value of the intruder
with respect to the sentry averaged over the length of
each experiment. Covert runs are shown in blue, and
overt ones in red.

Figure 5 shows the average general visibility for the 16
trajectories. Again, blue and red bars are used to show
the covert and overt trajectories respectively.

It can be seen that the covert (blue) trajectories show
a smaller mean general visibility value in all the experi-
ments except one for according to the general visibility
metric, but significantly lower values for the visibility
with respect to sentry metric.

Thus, using a network of fixed cameras, we can track
the motion of individuals with enough precision to dis-
tinguish the behaviour of individuals having differing in-
tentions. This result implies another conclusion, namely
that persons’ intent on evasion choose to move in a dif-
ferent way to “normal” individuals. We can also measure
how their intent affects their interactions with others, for
example, they may actively try to avoid being seen by
others.

7 Conclusion

We have shown that a network of fixed cameras can si-
multaneously and collaboratively track the movements
of a number of human targets in a low-traffic indoor en-
vironment. This is nothing new; in fact, we build on
our earlier work that shows how the physical configura-
tion of the camera network can be deduced by observing
the motion of a mobile agent [Rawlinson et al., 2004].
The arrangement of the cameras can also be manually
estimated, as done here.

Figure 4: Visibility of intruder with respect to sentry
(averaged over trajectory lengths) for 8 covert(blue) and
8 overt (red) experiments

Figure 5: General visibility of intruder (averaged over
trajectory lengths) for 8 covert(blue) and 8 overt (red)
experiments
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This work goes beyond previous research by attempt-
ing to infer the intentions of tracked human targets, from
their movements. The work overcomes two principal dif-
ficulties, namely the acquisition of suitable data and au-
tonomous analysis of that data to yield meaningful and
useful results. In this case, the objective was to detect
persons attempting to avoid or hide from trusted agents
(guards) in secure environments.

Although there are a number of technologies that help
to identify potentially threatening or unauthorised per-
sons, few are able to exploit the low-resolution fixed cam-
era networks that are prolific today. With such data it
is hard to model facial appearance, gait, expression or
other factors that might arouse suspicion. But it is rel-
atively easy to track position.

The experiments conducted for this article are prelimi-
nary and need to be repeated under stricter double-blind
experimental conditions, in order to ensure that realis-
tic human behaviour is observed. Nevertheless, it would
appear that a person who tries to avoid being seen by
guards does move differently to a person walking nor-
mally. That is, the intent to hide changes behaviour in
a way that can be autonomously and reliably detected
by typical security equipment.

As implemented, the system analyses interactions be-
tween trusted agents (the guards) and unknown persons.
In effect, it estimates the intent of one person (the in-
truder) by measuring their reaction to a third party (the
guard). It is assumed that if the guard encounters an
unauthorised person, he or she will establish their right
to access that location.

Of course, a particularly sneaky intruder may avoid
contact with guards altogether. And other times an au-
thorised person might avoid all security guards by mere
chance. How can these circumstances be differentiated?
How can the system separate innocent events from de-
liberate evasion?

Fortunately, our results also show that the movements
of a person attempting to avoid security guards can be
distinguished from normal motion, even without an en-
counter or a near-miss. The motions of people trying to
hide conform more closely to the Covert Path transform
[Marzouqi and Jarvis, 2006].

Future work will include more carefully designed ex-
periments to verify that the behaviour observed here
is realistic and representative. Further, it needs to be
shown that in larger and more complex environments
different human intentions continue to have a measur-
able effect on human behaviour. The authors hope to
analyse other aspects of human movement in an effort
to determine other criteria that help to highlight suspi-
cious persons. For example, the speed of motion may
be significant. Not all such metrics will be intuitive: Al-
though the authors believed that prolonged proximity to

obstacles would be a good indicator of “hiding”, our re-
sults suggest that this is not true. People tend to move
close to obstacles for efficiency and convenience.

This work may have a number of direct applications
in low-traffic secure environments, such as public places
out of hours, and private business premises. Many false-
alarms could be eliminated and security improved by
causing the system to autonomously instruct guards to
intercept individuals who have, by chance or design, thus
far avoided inspection. Although our goal in creating
this system was explicitly to detect “people trying to
hide from security guards”, similar analysis of peoples’
relative movements could be applied to many other sce-
narios. The general element is the inference of human
intent, from their movements with respect to other peo-
ple. For example, CCTV cameras could be configured
to detect people following others late at night, possibly
prior to an assault.
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