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Abstract

Since its inception in the late 1980s, the process of simultaneous local-
isation and map building (SLAM) has become a key subject of discourse
amongst the robotics community. Many consider it to be instrumental to
autonomous mobile robot navigation in an a priori unknown environment,
especially when planning efficient and purposeful trajectories. But due to
data association uncertainty, navigation error (e.g., odometric drift) and
sensor noise, SLAM has proven to be a complex problem. This paper first
describes the SLAM problem and then reviews the current state of the
art in solving it with regard to real-world operation.

KEYWORDS: Mobile Robots; SLAM; EKF; FastSLAM; Scan Matching; The
Kidnapped Way.

1 Introduction

Simultaneous localisation and map building (SLAM) is the dual process of build-
ing a map of the environment, comprising landmarks and possibly other features
(obstacles, topography, etc.), and using this map to ascertain the robot’s abso-
lute pose. The robot starts at an unknown location in an a priori unknown en-
vironment. It then uses its onboard sensors to observe the local landmarks, and
from this information, computes its own pose while simultaneously estimating
the locations of these landmarks. As the robot moves through the environment,
its changing observational viewpoint enables the incremental building of a com-
plete map of landmarks, which are continuously exploited to track the robot’s
current pose relative to its initial pose.

In mathematical terms, the objective of the SLAM process is to estimate
the system state xk at discrete time instant k, given by

xk =


xrk

x1

...
xn

 (1)
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Figure 1: Robot Coordinate System

where xrk
is the robot’s state and the set M = {xi | 1 ≤ i ≤ n} represents the

map of observed landmarks. The landmark states xi, not given as a function
of time here, are generally assumed to be stationary; so moving environmental
features are treated as unwanted noise. Moving features, however, can still be
useful to the SLAM process if their dynamism is predictable (e.g., the sun with
respect to Earth), intermittent (e.g., vehicles that are temporarily parked) or
negligible within a sparse environment.

For a 2D Cartesian based map, the robot’s state can be defined by its pose
(position and orientation) in space

xrk
=

 xrk

yrk

θrk

 (2)

relative to a global reference frame, as shown in Figure 1. The landmarks in the
map M are commonly represented as points in space and therefore their states
may be defined by

xi =
[

xi

yi

]
. (3)

However, equations (2) and (3) vary according to the robot’s intended applica-
tion and the particular SLAM strategy used.

Now that a definition of SLAM has been given, what makes the practical
operation of SLAM a problem? The answer to this question, as discussed in [1],
lies in the difficulty of coping with three distinct forms of uncertainty:

1. Data association uncertainty

2. Navigation error

3. Sensor noise

Data association uncertainty occurs because of the robot’s inability to properly
identify a landmark perceived from different poses as the same. It is therefore
possible to wrongly associate landmarks, thereby corrupting the map. This
problem is generally referred to as the data association problem or correspon-
dence problem [2, 3]. Navigation error is caused by the inevitable divergence
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between the robot’s assumed motion, via the vehicle model, and its actual mo-
tion. This divergence can lead to an accumulative error in the robot’s estimated
pose as well as exacerbate the data association problem. The final form of un-
certainty is the result of imperfect sensing devices, the measurements of which
are inherently noisy and sometimes completely erroneous.

Together, these uncertainties culminate into a complex SLAM problem, one
which some behaviourists believe is not worth solving [4]. Their argument is
that humans and animals can navigate perfectly well without precise quantita-
tive knowledge of their location; so why should their mechanical counterparts
need to perform SLAM? A common rebuttal to this argument is that there
is a range of useful applications, such as cross-country and interplanetary ex-
ploration, undersea navigation and mining, where the robot needs to track its
precise position over a long-term period without the aid of an a priori map or ar-
tificial infrastructure [5]. By using SLAM, the robot is able to navigate efficiently
and purposefully within its a priori unknown environment, while strategically
carrying out its mission. In fact, some researchers go beyond this conserva-
tive view by stilting the solution to the SLAM problem as the cornerstone or
“Holy Grail” of robot autonomy [6]. For these reasons, the SLAM problem has
received a considerable amount of research attention, and judging by its domi-
nant discourse at international conferences, the number of active researchers in
this area is growing rapidly.

A number of methods have been proposed to solve the SLAM problem,
each with relative strengths and practical limitations. This paper provides a
review of these methods and delves into the inner workings of some of the more
notable cases. Since all the relevant works cannot be cited here for reasons of
brevity, a representative sample will be used to convey the current state of the
art. Additionally, the various assumptions and contrivances adopted, which are
often hidden under a shroud of mathematical rigour in the literature, will be
examined in relation to their impact on real-world operation.

The various methods will be compared on the basis of several key properties.
These properties may include, for example, the map representation (e.g. Carte-
sian landmark locations, occupancy grid, or polygons); the representation of
uncertainty in the map (e.g. Gaussian / mixture of Gaussians, maximum likeli-
hood, or a particle set); restrictions on sensor noise; optimality of convergence;
computational complexity; accuracy (with respect to ground truth); general-
ity / applicability; robustness to unmodeled events (e.g. large non-systematic
motion errors, dynamic environmental features, or incorrect data association);
and whether the map is incrementally built, and if so, the consistency of the
resultant map.

2 Review of SLAM Methods

This section begins with what is currently the most popular approach: the
estimation-theoretic approach. It will be used later as a benchmark for compar-
ison between the other approaches.
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2.1 The Estimation-Theoretic Approach

The estimation-theoretic or extended Kalman filter (EKF) based approach was
first introduced by Smith, Self and Cheeseman in their seminal paper [7], which
described the use of an EKF [8] to build a stochastic map of spatial relation-
ships. This work was extended shortly after by Moutarlier and Chatila [9],
who considered the correlated noise between landmarks in the map to preserve
the filter’s consistency. Leonard and Durrant-Whyte [10]1 then implemented
it using an indoor mobile robot equipped with sonar sensors. Since then, a
considerable amount of progress has been made in the development of the EKF
based approach, including such contributions as its application to different do-
mains [11, 12]; the use of various sensors [13, 14]; proofs of its convergence
properties [6] or lack thereof [15]; and methods that somewhat address its high
computational complexity of O(n2) [16, 17, 18, 19, 20].

The mathematical framework of the EKF is based on a state space repre-
sentation of the robot and its environment. In presenting the mathematical
framework here, the system state vector xk given in Section 1 will be used and
several models will be introduced. The first model, called the system plant
model, describes how the system states change as a function of time k and is
conventionally written as a non-linear state transition equation of the form

xk = f(xk−1,uk) + vk (4)

where uk represents the control input asserted in the time interval (tk−1, tk], vk

denotes temporally uncorrelated Gaussian noise with zero mean (E[vk] = 0,∀k)
and covariance Qk, and f(·, ·) is a non-linear function that maps xk−1 to xk

given uk. Similarly, a robot or vehicle model is used to capture the robot’s
progression from its previous state, xrk−1 , to the next, xrk

, as determined by
its kinematics, and can be written as

xrk
= fr(xrk−1 ,urk

) + vrk
. (5)

Assuming that the landmarks in the map M are stationary, the landmark
model is trivially

xi, k = xi, k−1 (6)

and therefore the dynamics of the system is confined to the robot model. During
the robot’s motion, it uses an onboard sensor, or a multisensor arrangement
[21], to observe the local landmarks and measure their relative positions. This
is represented by an observation model where the observation at time k, denoted
zk, is expressed in the form

zk = h(xk) + wk (7)

where wk is a random vector of temporally uncorrelated measurement noise
with zero mean (E[wk] = 0,∀k) and covariance Rk, and h(·) is a non-linear
function that models the relationship between the observation of system states
and the states themselves.

Based on the system and observation models given in (4) and (7), respec-
tively, the EKF fuses all the available information about the system’s state to

1The origin of the phrase “simultaneous localisation and map building”.
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compute a state estimate with minimum mean-squared error (MMSE). This
is accomplished through a recursive, three-stage cycle consisting of prediction,
observation, and update steps [22].

Since the EKF equations [23, 8] composing these steps have been widely
published with many notational nuances, the notation used to present them
here will be briefly described first. The notation x̂−k will represent the a priori
state estimate at time k or, in other words, the state prediction derived from
information up to time k− 1 (i.e., x̂−k = x̂k | k−1). Conversely, x̂+

k will represent
the a posteriori state estimate at time k and hence is conditioned on information
up to this time (i.e., x̂+

k = x̂k | k). Note that the ‘ + ’ and ‘− ’ superscripts will
also be used for other state variables to convey the same meaning.

2.1.1 Prediction

The first step of the filter involves generating predictions of the system’s state
x̂−k , its covariance P−

k , and the observation ẑ−k at time k. These predictions are
calculated as follows:

x̂−k = f(x̂+
k−1,uk) (8)

ẑ−k = h(x̂−k ) (9)
P−

k = ∇fxk−1P
+
k−1∇fT

xk−1
+ Qk (10)

where ∇fxk−1 ,
∂f
∂x

∣∣∣∣
(x̂+

k−1,uk)

(11)

The Jacobian ∇fxk−1 , defined in equation (11), is derived from linearising the
non-linear function f through a first-order Taylor series expansion about the
point x̂+

k−1. Also, note that equation (10) does not take into account the un-
certainty in the control inputs uk; however, this can be remedied by adding the
term ∇fuk

Uk∇fT
uk

(where Uk is the control covariance) to the right side of this
equation.

2.1.2 Observation

After the robot makes a partial observation zk of the true landmark states in
xk, the innovation νk is calculated using

νk = zk − ẑ−k (12)

under the assumption of perfect data association. The corresponding innovation
covariance Sk is calculated as follows:

Sk = ∇hxk
P−

k ∇hT
xk

+ Rk (13)

where ∇hxk
,

∂h
∂x

∣∣∣∣
x̂−k

(14)

Similar to the Jacobian ∇fxk−1 described earlier, the Jacobian ∇hxk
is a lin-

earisation of the observation function h.
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2.1.3 Update

The final step involves updating the state estimate x̂+
k and its covariance P+

k

according to the following equations:

x̂+
k = x̂−k + Wkνk (15)

P+
k = P−

k −WkSkWT
k (16)

where the Kalman gain Wk is given by

Wk = P−
k ∇hT

xk
S−1

k (17)

Overall, this filter provides a theoretically sound solution to SLAM and a
means of systematically studying its convergence properties, the evolution of the
map, and the propagation of positional uncertainties. However, from a prac-
tical standpoint, there are several issues that adversely affect its applicability.
To begin with, the approximation errors caused by linearising the system and
measurement functions can lead to filter instability and an inconsistent map
[15, 24], especially if the time step interval ∆tk (where ∆tk = tk − tk−1) is not
sufficiently small. Julier and Uhlmann partially solved this problem by intro-
ducing the unscented Kalman filter (UKF) [25], which tends to be more suited
to highly non-linear functions than the EKF. However, both of these extensions
to the standard Kalman filter are still limited by their inherent assumptions,
such as Gaussianity and independence of model errors, which realistically may
not hold true.

Another limitation of the EKF is that landmarks need to be uniquely iden-
tified by the data association process. For instance, it is not enough to just be
able to recognise that a certain percept is a tree; the tree has to be matched
to its corresponding landmark state in the map. Since data association is com-
monly performed using the gated nearest-neighbour (NN) algorithm [2], this type
of identification becomes increasingly less reliable as environmental clutter or
uncertainty in the robot’s estimated state x̂−k grows. This can cause false data
associations, which then often lead to catastrophic failure [22]. The likelihood
of this happening can be reduced by applying a more robust data association
technique such as the joint compatibility test [26] or the graph theoretic approach
[27]. Also, ambiguous observation data can be better handled using multiple hy-
pothesis tracking (MHT) [28, 29], which maintains each possible interpretation
of the data over time using multiple, probabilistically weighted, maps. These
enhancements, however, add to the computational complexity of the EKF.

Lastly, the biggest problem with the EKF is arguably its reliance on strin-
gent models to satisfy its predictive behaviour. This reliance means that the
operational performance of the EKF is extremely specific to the extent to which
the robot and its environment are predisposed to the modeling process. Con-
sequently, the robot designs and environments that cannot be easily modeled
or manipulated are often avoided, and those that can are tightly bounded with
little tolerance for the unknown. There are other probabilistic approaches to
SLAM that are not as rigid.
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2.2 Other Probabilistic Approaches

To begin to describe these other approaches, it is worthwhile to look at the
SLAM problem from a probabilistic point of view. The SLAM problem in this
context is considered to be a density estimation problem where the solution
involves finding the joint posterior probability of the robot’s pose xrk

and map
M at time k. This posterior can be written as

p(xrk
,M | z0 : k,u0 : k) (18)

where z0 : k and u0 : k represent the observation and control history, respectively.
For notational convenience, this posterior will be denoted bk(xrk

,M) from this
point on, and correspondingly referred to as the robot’s belief state at time k.

The probabilistic SLAM approaches, including the EKF, predominantly es-
timate the belief bk(xrk

,M) using some form of Bayes filter [30] (which is a
temporal extension of the archetypical Bayes rule [31]). In doing so, they often
treat the SLAM problem as a Markov process through which it is assumed that
the current belief state, bk(xrk

,M), depends only on the immediately preced-
ing state, bk−1(xrk−1 ,M), independent of how the preceding state was reached.
The belief probability can therefore be calculated recursively, as shown by the
generic Bayes filter:

bk(xrk
,M) = η p(zk |xrk

,M) ·∫
p(xrk

|xrk−1 ,uk) bk−1(xrk−1 ,M) dxrk−1 (19)

where η is a normalisation constant, p(zk |xrk
,M) is a probabilistic measure-

ment model, and p(xrk
|xrk−1 ,uk) is a probabilistic motion model.

However, there are several problems with implementing equation (19) in its
generic form. To begin with, the potentially high dimensionality of the map
can make the estimation of the belief bk(xrk

,M) computationally intractable.
This is difficult to avoid in practice, as the number of landmarks in the map
can easily be in the order of hundreds or even thousands. In addition, the belief
function is hard to factorise due to the uncertainty of the robot and landmark
positions being intricately intertwined [7, 9]. The need to maintain these intri-
cate correlations only complicates the task of addressing the high computational
complexity. Another problem is that the full posterior over a continuous space,
which possesses infinitely many dimensions, cannot be represented by a digital
computer [32].

Thus, working instantiations of Bayes filter are the product of additional
assumptions and approximations. It is primarily these assumptions, along
with their implications, that differentiate the currently existing probabilistic
approaches. The type of assumptions adopted shape the strengths and limita-
tions of each approach, as will become apparent in the following reviews.

The expectation maximisation (EM) based approach, proposed in [33], solves
the SLAM problem by estimating the mode of the posterior p(M | z0 : k,u0 : k)
(also denoted bk(M) for notational convenience) to find the most likely map
M∗, along with the most likely path taken by the robot. Formally, this can be
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expressed as solving the maximum likelihood (ML) estimation problem

M∗ = argmax
M

bk(M). (20)

The posterior bk(M), based on the derivation given in [33], can be written as

bk(M) =
∫

bk(xrk
,M) dxrk

∝
∫
· · ·

∫ k∏
j=0

p(zj |xrj
,M) ·

k∏
j=1

p(xrj
|xrj−1 ,uj) dxr1 . . . dxrk

(21)

where the robot’s initial pose is, arbitrarily, set to xr0 = [0 0 0]T . This equation
is void of any constants, normalisation or otherwise, as the objective is to only
maximise the posterior bk(M), not to calculate its true value.

The main problem with solving equation (20) is the high computational
complexity. The maximisation of the likelihood function, defined in equation
(21), involves searching in the space of all maps, and in each map, integrating
over all possible poses at every instant in time. Since this is generally not
feasible, an optimisation technique that performs local hill-climbing in likelihood
space is used. This technique, based on the classical EM algorithm [34, 35],
involves iterating two steps: an expectation step, or E-step, and a maximisation
step, or M-step.

2.2.1 E-step

In this phase, probabilistic estimates for the poses xr0 , . . . ,xrk
are calculated

based on the currently best map M and data D0 : k (where D0 : k = {z0 : k,u0 : k}).
This can be considered a low-dimensional localisation problem, which is solvable
using standard Markov localisation [36]. However, there is a slight difference that
needs to be considered. Each posterior p(xrj

|D0 : k) is estimated using the data
from the entire time interval {0, . . . , k}, which requires two localisation passes:
one forwards in time, giving p(xrj |D0 : j), and the other backwards in time,
giving p(xrj |Dj+1 : k).

2.2.2 M-step

The maximisation step involves calculating the most likely map M∗ based on the
pose estimates obtained in the E-step. In essence, this is a map optimisation
problem whereby the robot’s poses xr0 : k

are treated as latent variables. As
given in [30], the map M∗ is calculated by maximising the expectation over the
joint log-likelihood of the robot’s path xr0 : k

and data Dj+1 : k:

M [γ+1] = argmax
M

E[log p(xr0 : k
, D0 : k |M [γ]) |D0 : k] (22)

Here the superscript ‘ [γ] ’ denotes the iteration of the optimisation algorithm.
The algorithm generates a sequence of maps M [0],M [1],M [2], . . . with monoton-
ically increasing likelihood until a local maximum is reached. Since finding this
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local maximum can still be a difficult problem in a high-dimensional space, it
has become common practice to represent the map as a discrete occupancy grid
[37, 38] and solve equation (22) for each grid cell independently.

The EM approach has several key advantages over the EKF. Firstly, it pro-
vides a solution to the data association problem that does not require the unique
identification of landmarks; in fact observed landmarks can be somewhat indis-
tinguishable. Data association is performed through gradual reinforcement or
degradation of matching probabilities as all the observation data over time is
considered. This allows past data association decisions to be revised and pos-
sibly corrected. The EM approach can also estimate the mode of complex
posteriors, and does not assume Gaussian noise like the EKF.

However, there are a few weaknesses that need to be considered. Unlike
the EKF, the EM approach processes the entire data set multiple times, and
as a consequence, does not provide an incremental solution to SLAM where
a map is incrementally built as new observation data is received. Another
weakness is that the EM algorithm is traditionally suited to offline processing.
Online versions have been proposed (e.g., [39]), however, they partially sacrifice
the robustness in the data association process to accommodate the restricted
computational time windows. Lastly, the EM approach can become trapped in
a local maxima and, hence, arrive at a suboptimal solution.

Montemerlo et al. [40] have recently proposed a new probabilistic approach
to SLAM that is based on particle filtering [41, 42, 43]. This approach, called
FastSLAM, estimates the posterior p(xr0 : k

,M | z0 : k,u0 : k) (also denoted bk(xr0 : k
,M)),

which is a slight variation of the commonly sought posterior given in equation
(19). That is, instead of estimating the posterior over momentary robot poses,
it estimates the posterior over robot paths. Before describing how this is done,
the topic of particle filtering will be briefly summarised first (see [42] for a
comprehensive review).

The idea behind particle filtering is to approximate the posterior density in a
Markov chain through a process known as importance sampling [44]. In essence,
the posterior is represented by a set of m random sample states or particles
Sk = {s j

k | 1 ≤ j ≤ m} drawn from it. Each particle is given a weighting ω j
k

called an importance factor, which signifies the particle’s quality relative to the
other particles. The weighted particle set Sk is then processed in lieu of the full
posterior. Note that the full posterior can still be roughly reconstructed, e.g.,
using a histogram or kernel based density estimation technique [45], because of
the duality between particles and the posterior from which they are drawn.

A vanilla particle filter process can be described abstractly as follows. First,
the initial set of particles S0 are randomly drawn from the state space. For
time k ≥ 1, the set Sk−1 is filtered (i.e. transformed into Sk) by computing two
stages: a prediction stage and an update stage. In the prediction stage, a particle
s̄ j

k is generated for each particle s j
k−1 ∈ Sk−1 according to an actuation model.

The resulting particles, commonly referred to as the proposal distribution, are
placed in a temporary set S̄k. In the update stage, the weight of all the particles
in this temporary set are re-evaluated based on the latest observation informa-
tion to produce the target distribution. Finally, m particles are drawn (with
replacement) from S̄k to give Sk, which involves drawing the higher weighted
particles from S̄k and resampling the others. The particles thereby converge
toward better solutions, analogous to the evolution of chromosomes in genetic
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algorithms [46, 47]. The specifics of this process, however, vary according to the
application and the particular particle filter used.

In the context of mobile robot localisation, the particle filter approach known
as Monte Carlo localisation (MCL) [48] has been shown in studies such as [49] to
be more robust than the EKF. MCL can also represent complex posteriors; solve
the kidnapped robot problem; and operate as an anytime algorithm [50] under
limited computational resources. However, for years particle filters were con-
fined to these low-dimensional problems, due to the number of particles needed
to populate a d-dimensional space increasing exponentially with d. Particle
filters were therefore too inefficient to be used for high-dimensional problems
like SLAM. However, this changed when Murphy [51] identified a structural
property of SLAM that could be exploited to develop an efficient particle filter.
This structural property is based on the condition that correlations in the un-
certainty of different map landmarks arise only from uncertainty in the robot’s
pose. Therefore, if hypothetically the robot knows its trajectory perfectly, the
landmark states can be estimated independently of each other. This conditional
independence has led to the use of the so-called Rao-Blackwellised particle filter
[42] (named after its relation to the Rao-Blackwell theorem [52]), which analyti-
cally marginalises out some of the variables attributed to a problem’s structure
for an efficient solution.

The FastSLAM approach is an instantiation of the Rao-Blackwellised particle
filter. It uses the structural property identified by Murphy to estimate the
posterior bk(xr0 : k

,M) in the factorised form [40, 53]:

bk(xr0 : k
,M) = bk(xr0 : k

)
n∏

i=1

p(xi |xr0 : k
, z0 : k) (23)

This factorisation is exact and universal to the SLAM problem. Essentially,
it decomposes the posterior over robot paths and maps into n + 1 recursive
estimators: one estimator over robot paths bk(xr0 : k

) and n separate estimators
over landmark states p(xi |xr0 : k

, z0 : k) conditioned on each hypothetical path.
FastSLAM estimates the robot path posterior bk(xr0 : k

) using a particle filter.
Each of the particles in this filter maintains its own map that consists of n
independent EKFs, one for each of the landmarks. Thus, the j-th particle at
time k can be written in the form

S j
k = {x j

rk
, µ j

1, k,Σ j
1, k︸ ︷︷ ︸

landmark x1

, . . . , µ j
n, k,Σ j

n, k︸ ︷︷ ︸
landmark xn

} (24)

where the mean µ j
i, k and covariance Σ j

i, k are the Gaussian parameters of each
landmark posterior. Therefore FastSLAM integrates particle filtering with Kalman
filtering; however, in this context, each EKF is only estimating a single landmark
position and, hence, is low-dimensional.

Currently, there are several variants of the FastSLAM algorithm, including
FastSLAM version 1.0 [40], 2.0 [54], and FastSLAM with unknown data associ-
ation [53]. Assuming that the data association is uniquely known and the initial
set S0 has been initialised, the filtering algorithm proceeds as follows. First, the
path posterior is extended by sampling a new pose xrk

for each particle in the
prior sample set Sk−1. FastSLAM 1.0 samples new poses based on the most

10

MECSE-4-2007: "A Review of Robotic SLAM", D. J. Spero and R. A. Jarvis



recent control input uk:

x j
rk
∼ p(xrk

|x j
rk−1

,uk) (25)

Although the measurements zk are ignored, they are later incorporated through
the resampling process. Nevertheless, this way of sampling new poses has been
identified as being inefficient [54], especially when the robot’s motion errors are
large relative to the measurement noise. When this is the case, sampled poses
tend to fall into areas of low measurement likelihood and, consequently, are
poorly weighted. It is then likely that a large proportion of the sampled poses
will be terminated, or wasted, through the resampling process. FastSLAM 2.0
addresses this problem by incorporating the measurements into the proposal
distribution

x j
rk
∼ p(xrk

|x j
r0 : k−1

, z0 : k−1,u0 : k−1) (26)

which constitutes the primary difference between the two versions.
The second step of the filtering process involves updating the observed land-

mark estimates. This is performed by linearising the measurement function h
and applying the standard EKF measurement update equations [8] (refer to [53]
for a detailed description). These first two steps are then repeated m times to
produce a set of m particles. The final step involves correcting the proposal
distribution through resampling. Each particle is first assigned an importance
weight, given by

ω j
k =

target distribution
proposal distribution

(27)

Then m particles are drawn (with replacement) with a probability proportional
to their weights. In the case of FastSLAM 1.0, this resampling process accounts
for the latest measurements zk, which were earlier ignored. The purpose of
resampling in FastSLAM 2.0, however, is more mundane. It is used merely to
correct mismatches in the normalisation between particles [54].

In terms of performance, the FastSLAM approach has several key strengths.
First and foremost, data association decisions can be robustly made on a per-
particle basis, analogous to multiple hypothesis tracking (MHT) (discussed in
Section 2.1). Therefore, instead of just maintaining the data association with
the maximum likelihood, the posterior tracks multiple data associations that
are resolved over time. Another strength is its computational complexity of
O(m log n) when the maps are represented by binary trees [40], which is theoret-
ically lower than the quadratic complexity of the vanilla EKF. Also, FastSLAM
can cope with a non-linear vehicle model without the need for linearisation.

The primary weakness of FastSLAM is that the resampling process contin-
ually reduces the diversity in the particle set by repeatedly discarding some
particles and duplicating others [55]. If the resampling steps of every particle is
traced back in time, there will be a point at which all the particles share a com-
mon history of the robot’s trajectory and hence the same ancestor. Therefore
the hypotheses of the robot’s trajectory and landmark positions prior to this
point of commonality cannot be revised. The resulting lack of particle diver-
sity, called the impoverishment problem [56], restricts the size of the loop that
can be corrected (the concept of closing an exploratory loop of accumulating
positional errors is described in [57, 58, 59, 60]) and can lead to a suboptimal
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solution. A closely related problem occurs when there is an insufficient number
of particles in the vicinity of the correct state [61]. This deprivation problem,
which is inherent to all proactive approaches, is especially troublesome in large
environments or when the robot is proverbially kidnapped. A lack of particles
or the time lag involved in distributing particles can ultimately cause the filter
to diverge. While increasing the number of particles can offset these problems,
it adds to the computational complexity and therefore there is a limitation to
the amount of particles that can be processed in real-time. Finally, a large com-
putational effort can be wasted in updating particles with a negligible weight,
as the variance of the weights tends to increase stochastically over time.

2.3 Scan Matching

Another category of SLAM approaches includes those that are based on align-
ing neighbouring sensor scans, e.g., from a laser or sonar scanner, to estimate
the relative translations and rotations of the robot between scans. These scan
matching approaches align the overlapping segments of the scan set by min-
imising some distance metric between inter-scan primitives or raw data. This
is somewhat similar to model-based matching [62], however, scan matching does
not use an accurate, dependable model as the base for comparison. Instead,
it finds the congruence between noisy data sets that are negatively affected by
occlusion and hence the robot’s limited field of view.

The majority of scan matching approaches are derived from the Iterative
Closest Point (ICP) algorithm [63, 64] and its many variants [65]. These ap-
proaches are based on iteratively refining an initial robot pose estimate obtained
through odometry, which limits the search space. However, it is assumed that
the displacement between the initial estimate and the robot’s true pose is small
enough to arrive at the globally optimal match.

The various approaches mainly differ in the primitives they select and match;
the type of distance metric used (e.g., sum of squared distances between corre-
sponding pairs); the weighting of correspondences; and the rejection of outliers.
For example, Cox matches scan points to the line segments of a hand-crafted
map [66]. Lu and Milios matches points to points in an a priori unknown, arbi-
trary environment (not necessarily polygonal) [67]. Their method does not rely
on the uniqueness of landmarks and derives robustness from using the bulk of
the scan points in the matching process. Gutmann and Konolige use a combina-
tion of the above two methods to take advantage of the computational efficiency
of Cox’s method and the universal capabilities of Lu and Milios’s method [59].
They also take into consideration the topological relationships between neigh-
bouring robot poses, associated via odometry and scan overlaps, to maintain a
consistent map in large cyclic environments. Jensen and Siegwart establishes
correspondences between points based on a probabilistic distance metric that
incorporates both sensor noise and robot pose uncertainty [68]. This provides
a way of robustly detecting outliers, and as a result, their algorithm exhibits a
faster convergence than the standard ICP algorithm. Nüchter et al. also achieve
a faster convergence by first subsampling the point data and then using kd-trees
to efficiently find the closest points [69].

There are other, less common types of scan matching approaches. Some
of these approaches are based on finding statistical correlations between scans,
such as Weiss and Puttkamer’s histogram matching approach [70] and Biber’s
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normal distributions transform (NDT) [71]. These approaches do not require
explicit correspondences between individual scan elements, however, they rely
on the chosen statistical criteria effectively modeling the environment.

There are also approaches that have the ability to globally localise the robot
without the aid of initial pose information. Crowley et al. accomplish this by
using a training set of range scan profiles from various known poses to con-
struct a lookup table, which can then be indexed to identify possible origins
of a scan [72]. Gutmann et al. exploit the structured nature of the RoboCup
soccer field [73] to match line segments extracted from a scan to those of an
a priori map [74]. Weber et al. similarly use an a priori map of a structured
environment, but instead of matching line segments, they match edges and con-
cave/convex corners [75]. The matching process involves heuristically searching
for corresponding patterns of inter-feature relationships, which are invariant to
the robot’s observational viewpoint. Tomono matches what are called directed
points, comprising points and their tangent directions, which are also viewpoint
invariant [76]. This researcher’s approach solves the SLAM problem; however,
it is computationally complex and the map does not converge over time. To ad-
dress the complexity problem, global localisation is only applied when the robot
fails to find a match using a localised search in the vicinity of the odometry
estimate. This can lead to a suboptimal solution, as large odometry errors in a
partially symmetrical environment can produce multiple hypotheses which all
need to be considered.

The Kidnapped Way, proposed by Spero [77], matches sensor observations
to continually solve the kidnapped robot problem over time. In this case, odom-
etry and an associated vehicle model are purposely disregarded, and there is no
assumption of continuity in the robot’s motion. The robot’s locomotive mecha-
nism is thus irrelevant, novelly giving the robot anonymity and enabling SLAM
to be implemented as a standalone, portable device with a similar flexibility to a
Global Positioning System (GPS) receiver [78]. The robot can be robustly built
without concern for its odometric accuracy or modeling complexities. However,
this approach can fail in a highly symmetrical or featureless environment, and
it can be computationally expensive to process a very large map.

Finally, there are hybrid approaches that combine some other SLAM ap-
proach with scan matching. For instance, Hähnel et al. combine FastSLAM
with scan matching to minimise odometry error, thereby reducing the number
of particles needed to build large-scale maps [79]. Pradalier and Sekhavat [80],
on the other hand, use scan matching to improve the data association robustness
of an EKF variant called the geometric projection filter (GPF) [81].

2.4 Qualitative Approaches

The last category of SLAM approaches in many ways mimics the qualitative,
relativistic knowledge used in an animal or human’s mental representation (or
cognitive map [82]) of navigable environments [83, 84, 85, 86]; and hence has a
biological premise. Qualitative SLAM approaches obviate the need for rigorous
models of the robot’s locomotion mechanism and sensors. They also do not
strive for a metrically accurate map. In combination, these attributes give
them a heightened robustness and computational efficiency.

These approaches, including [87, 88, 89] amongst many others, observe the
topological spatial relationships between landmarks or obstacles to navigate
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and map the environment. Since this paper is largely concerned with quanti-
tative approaches, they are only mentioned here for completeness. However,
they do highlight the inverse relationship between rigorous modeling and ro-
bustness/generality.

3 Conclusion

This paper described the SLAM problem and then presented a review of the
seminal approaches used to solve it. Most of these approaches, like the EKF,
rely on stringent models and assumptions with regard to the robot’s locomotion
mechanism, sensor noise and the environment, and hence tend to only oper-
ate in a context specific situation. Additionally, the dubious task of modeling
these aspects tends to entice the roboticist to contrive the situation so that the
artificial model boundaries remain intact. This of course goes against the under-
lying ethos of SLAM: exploration of the unknown. Yet, for highly constrained
situations, these approaches can produce a reasonably accurate solution. The
Kidnapped Way, which goes against this modeling motif, is more in tune with
the unstructured and chaotic nature of the real-world; however, its development
is still in its infancy.
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