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� Introduction

The multipole expansion �CGR��� is a computational technique that can be utilized in the calculation of
the potential produced by individual sources� It has immediate application in the large scale simulation
of interacting particles�

Recently� Beatson and Newsam �BN��� have suggested using such techniques for the rapid evalu�
ation of thin�plate splines� The thin�plate spline is a method of data approximation that is analogous
to attaching a thin 	exible metal plate to the data points with springs between the data points and
the plate� Mathematically� it can be shown �Wah�
� that the solution can be expressed in terms of
the linear combination of spline kernels r� log r centered at each data point� The essential idea is that
the thin�plate spline formulation reduces to a matrix equation that needs to be solved for the linear
coe�cients of these kernels and� subsequently� the matrix equations need to be evaluated to produce
values for the function approximating the data at other points� Being able to rapidly evaluate the lin�
ear combination of these kernel functions would be an advantage in both the solution stage �allowing
iterative solution methods as well as the evaluation stage�

Thin�plate splines arise in the context of computer vision through a regularization formulation
�BZ���� Thus we expect the techniques discussed here to have applications in many of the areas of low
level vision �see� for example� �Ter��� �BZ����

The contribution of this paper is to take the suggestion of Beatson and Newsam �BN���� which
uses the standard multipole expansions �CGR���� and to develop an alternative approach motivated
by the work of Anderson �And���� This approach replaces the multipole expansion with the evaluation
of an expansion along a closed contour surrounding the centres of the potential functions�

��� Notation

In the following� we use the complex plane to represent R� and a point in the plane is denoted by
z � rei� We will sometimes express a given function in two ways� e�g�� E�z or E�r� � depending
upon whether it is more convenient to use the polar form� The complex conjugate of z is denoted z�

The real and imaginary parts of z are denoted Rfzg and Ifzg�

�
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� Expansion for Thin�Plate Kernel

It is known �see �SNWC��� p� ��� that a real function which is biharmonic on the punctured plane
�missing the origin can be represented as�

u � �a� br� log r� r log r � �c cos� � d sin �

�
n��X
n���

rn�an cosn� � bn sinn� � rn���cn cosn� � dn sinn�� ��

In this section� we will see how to derive the coe�cients or approximations to the coe�cients of the
general form� We use this to then derive two approximations� one valid far from the centre of expan�
sion �which corresponds to the Laurent series expansion of �BN��� and the outer ring approximation
of �And���� and one valid near the centre of expansion �the Taylor series expansion or inner ring
expansion�

Recently� Beatson and Newsam �BN��� have shown that a collection of m thin�plate kernels �each
of which is biharmonic on the punctured plane each centered at zj �and with �real coe�cient dj � has
an expansion�

��z �
mX
j��

dj jz � zj j
� log jz � zj j

�
h
�jzj� � �R

n
�z
o
� �

i
log jzj�R

�
�X
k��

�akz � bkz
�k

�
� ��

The values of the constants ak and bk do not concern us here� but we will need the following�

� �
mX
j��

dj � ��a

� �
mX
j��

djzj � ��b

b� � � �
mX
j��

dj jzj j
�� ��c

Our immediate aim is to �nd an alternative expression for the multipole expansion �the last term in
�� De�ne�

E�r� � � ��r� ��
h
�jzj� � �R

n
�z
o
� �

i
log jzj

� R

�
�X
k��

�akz � bkz
�k

�

� R

�
�X
k��

�ak��r
� � bkr

�ke�ik�
�
� b�� ��

From the last expression we can see that� for �xed a and b� a �� b� and for k � ��Z ��

�
E�a� seiks ds � ��ak��a

� � bka
�k � ��aZ ��

�
E�b� seiks ds � ��ak��b

� � bkb
�k� ��b
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The key is that this gives us two equations in two unknowns� i�e�� the coe�cients ak and bk� We can
use the �rst expression in equation � to numerically approximate the left hand sides in equations �a
and �b� Before we do this� it is simple to solve for the coe�cients�

ak�� �
�

�

�

a� � b�

�
ak
Z ��

�
E�a� seiks ds �bk

Z ��

�
E�b� seiksds

�
� ��a

bk �
�

�

�

a� � b�

�
�b�ak

Z ��

�
E�a� seiks ds �a�bk

Z ��

�
E�b� seiksds

�
� ��b

We substitute these into equation �� interchange the summations and integrations� and truncate the
summations at term k � M �this truncation is to avoid the �aliasing� e�ects that Anderson reports
with his log kernels �And����

E�r� � � R

�
�

�

�

a� � b�

Z ��

�
�r� � b�E�a� s

�
MX
k��

�
a

r
ke�ik	��s


�

��a� � r�E�b� s

�
MX
k��

�
b

r
ke�ik	��s


�
ds

�
� b�� ��

Finally� it is easy to sum the two geometric series and take the real parts �see appendix A to obtain�

E�r� � �
�

�

�

a� � b�

Z ��

�

�r� � b�E�a� s
��a

r
M�� cos��M � ��� � s � �a

r
M�� cos�M�� � s � a

r
cos�� � s� �a

r
�

�� ��a
r
 cos�� � s � �a

r
�

�

�a� � r�E�b� s
�� b

r
M�� cos��M � ���� s � � b

r
M�� cos�M��� s � b

r
cos�� � s� � b

r
�

�� �� b
r
 cos�� � s � � b

r
�

ds

�b�� ��

� Evaluation of the Expansion

To calculate the value of the expansion involves� in principle� choosing two closed curves �circles of
radii a and b for simplicity � see �gure � and approximating the respective integrals in equation �
by some numerical quadrature� We use the simple strategy of breaking the circle up into K equally
spaced angular sections h � ��

K
� To simplify the expressions we de�ne�

K�a� r� �� s�M �
��a

r
M�� cos��M � ���� s � �a

r
M�� cos�M�� � s � a

r
cos�� � s� �a

r
�

�� ��a
r
 cos�� � s � �a

r
�

� ��

We can then approximate the terms in � by�

E�r� � �
�

�

�

a� � b�

KX
i��

�
�r� � b�E�a� siK�a� r� �� si�Mh� �a� � r�E�b� siK�b� r� �� si�Mh

�
��� ��


Similar reasoning �see appendix B allows us to derive the inner ring approximation�

��r� � �
�

�

�

a� � b�

KX
i��

�
�r� � b���a� siK

��a� r� �� si�Mh� �a� � r���b� siK
��b� r� �� si�Mh

�
� ���
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Figure �� Outer Ring Expansion

where we have de�ned�

K��r� a� �� s�M �
� r
a
M�� cos�M�� � s� � r

a
M�� cos��M � ��� � s � �

� �
�
�
r
a
�

� r
a
� � � r

a
cos�� � s � �

� ���

� Results

In this section we demonstrate the e�ectiveness of the approximations by numerical experiments� In
all cases� the number of evaluation points around each ring is K � ���

Figure � shows the �absolute relative error �de�ned as the absolute value of the ratio of error over
true potential as a function of radius for the outer ring approximation� The true values are calculated
using the �rst part of equation �� We note that the expansion appears accurate for all r � b �and�
indeed� may well be su�ciently accurate between the two rings�

Figure � shows the relative error as a function of radius for the inner ring approximation� Again� we
note that the expansion appears accurate for all r � a �and� indeed� may well be su�ciently accurate
between the two rings�

Finally� using the same sources as in table � we set M � � in equation � and we note that the
resulting approximation shown in �gure � is not as accurate close to the rings� This con�rms the same
behaviour as observed by Anderson �And��� for his combination of log potentials�
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Figure �� Outer Ring Approximation � Relative Error
The relative error in the approximation to ��r� � versus radius taken along a line at orientation � � 
�
The inner ring has radius a � 
��� and the outer ring has radius b � ����� The �
 �sources�� see
table �� were placed in a square of side length ��
 centred on �
� 
� Note� relative error is shown on a
logscale �base �
�
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Table �� �
 randomly chosen �sources� for the outer ring approximation�
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Figure �� Inner Ring Approximation � Relative Error
The relative error in the approximation versus radius taken along a line at orientation � � 
� The inner
ring has radius a � 
��� and the outer ring has radius b � ����� The �
 �sources�� see table �� were
placed in a square of side length ��
 centred on ��b� 
� Note� relative error is shown on a logscale
�base �
�

Magnitude Coordinates
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Figure �� Outer Ring ApproximationM �� � Relative Error
The relative error in the approximation to ��r� � versus radius taken along a line at orientation � � 
�
The inner ring has radius a � 
��� and the outer ring has radius b � ����� The �
 �sources�� see table
�� were placed in a square of side length ��
 centred on �
�
� 
�
� Note� relative error is shown on a
logscale �base �
�

� Conclusion

We have derived an approximation to the linear combination of the �potentials� derived from thin�
plate spline formulations� These approximations are in the spirit of those introduced by �And��� to
approximate the combination of potentials � satisfying Laplace�s equation on the punctured plane �more
speci�cally �� � 	� Building upon the work of Beatson and Newsam �BN���� we have derived and
alternative approximation technique for kernels that are biharmonic on the punctured plane ���� � 	�

Like Beatson and Newsam� we feel that such approximations can lead to feasible approaches to
spline formulations that involve several hundred or thousand data points� We also recognise the po�
tential application areas in computer graphics and image processing �particle systems� image warping�
and spline models of surfaces� The application areas we have immediately in mind are the spline
formulations in visual reconstruction� particularly vector spline models of motion estimation �Sut����
Indeed� the very nature of such problems is that one often obtains naturally clustered data points which
leads to clusters of spline kernels�

However� in order to demonstrate fully the feasibility of such approacheswe are currently working on
a full system that incorporates hierarchical or multigrid like control and data structures �e�g�� as outlined
but not implemented in �And��� �BN���� Clearly� there is also a need for better characterization of
the error �preferably analytically derived bounds but also an empirical characterization of the size and
dependence on various parameters such as the ring sizes a and b� the truncation point M � the number
of integration pointsK� and the relative spread and position of the �sources� with respect to the rings�
We have already observed� as one would expect� a degradation in the approximation when the rings
become less separated� and when the rings are too close to the sources� We have also con�rmed that
we get the same degradation as that that Anderson attributes to �aliasing� �when the truncation point
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is determined by an M too large for the number of evaluation points�

A Summation of Geometric Series

De�ne Z � a
r
e��s � Then� for arbitary limits L and M �

S �
MX
k�L

Zk ���

ZS � S � ZM�� � ZL ���

�Z � �S � ZM�� �ZL ���

S �
ZM�� �ZL

Z � �
���

�
ZM�� �ZL

Z � �

Z � �

Z � �

�
�ZM �ZL���jZj��Z

jZj� � �� �RfZg

RfSg �
jZj�RfZM � ZL��g � RfZM��� ZLg

jZj� � �RfZg� �
���

B Inner Ring Approximation

We know �BN��� that� for a collection of points outside of a ring of some given radius� we can approx�
imate the thin�plate potential within the disk by�

��z � R

�
�X
l��

�glz � hlz
l

�
� ���

Not surprisingly� the coe�cients producing the singularities in equation � are zero as we have no
singularities within the disk� Again� the values of the particular coe�cients do not concern us as we
produce an approximation by integrating the function over concentric circles�

In polar form�

��r� � � R

�
�X
l��

�gl��r
� � hlr

leil� � g�re
�i�

�
� ���

Without loss of generality� we can de�ne an new coe�cient h�� � h� � g� and set g� � 
 in the above
expression �since the real parts of the terms involving h� and g� are equal to some constant times
r cos ��

So we can see that for l � � �and using the new h��Z �

�
��a� se�ils ds � ��gl��a

� � hla
l� ��
aZ �

�
��b� se�ils ds � ��gl��b

� � hlb
l� ��
b
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or for l � �

gl�� �
�

�

�

a� � b�

�
a�l

Z ��

�
��a� se�ils ds �b�l

Z �

�
��b� se�ils ds

�
� ���a

hl �
�

�

�

a� � b�

�
�b�a�l

Z ��

�
��a� se�ils ds �a�b�l

Z �

�
��b� se�ils ds

�
� ���b

For the special cases g� and h� we obtain�

g� �
�

��

�

a� � b�

�Z ��

�
��a� s ds �

Z ��

�
��b� s ds

�
� ���a

h� �
�

��

�

a� � b�

�
�b�

Z ��

�
��a� s ds �a�

Z ��

�
��b� s ds

�
� ���b

On substituting into �� �and truncating the series at l � M gives�

��r� � �
�

�

�

a� � b�
R

�Z ��

�

�r� � b���a� s

�
MX
l��

�
r

a
leil	��s


�
� �a� � r���b� s

�
MX
l��

�
r

b
leil	��s


�
ds

�
�

�

�Z ��

�
�r� � b���a� s ds� �a� � r�

Z ��

�
��b� s ds

�	
� ���

This can be re�written more compactly as�

��r� � �
�

�

�

a� � b�
R

�Z ��

�
�r� � b���a� s

�
MX
l��

�
r

a
leil	��s
 �

�

�

�

��a� � r���b� s

�
MX
l��

�
r

b
leil	��s
 �

�

�

�
ds

�
� ���

We now sum the geometric series�

S �
MX
l��

�
r

a
leil	��s
 ���

�
� r
a
M��eiM	��s
 � � r

a
M��ei	M��
	��s
 � �� r

a
e�i	��s


� r
a
� � r

a
ei	��s
 � r

a
e�i	��s
 � �

� ���

Taking the real part�

RfSg �
� r
a
M�� cos�M�� � s� � r

a
M�� cos��M � ���� s � �� r

a
cos�� � s

� r
a
� � � r

a
cos�� � s � �

� ���

Finally� we de�ne K��r� a� �� s�M � RfSg� �
� �

K��r� a� �� s�M �
� r
a
M�� cos�M�� � s� � r

a
M�� cos��M � ��� � s � �

� �
�
�
r
a
�

� r
a
� � � r

a
cos�� � s � �

� ���
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