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ABSTRACT 
This technical report develops a simple statistical error model for estimating position and 
orientation of a mobile robot using odometry.  Once the errors are characterised, other 
sensor data can be combined sensibly in the estimation of position, using the Extended 
Kalman Filter [Kleeman, 1992 #100; Jazwinski, 1970 #117].  A closed form error 
covariance matrix is developed for (i) straight lines and (ii) constant curvature arcs and 
(iii) turning about the centre of axle of the robot.  Other paths can be composed of short 
segments of constant curvature arcs without great loss of accuracy.  The model assumes 
that wheel distance measurement errors are exclusively random zero mean white noise.  
Systematic errors due to wheel radius and wheel base measurement are ignored, since 
these can be removed by calibration.  Previous work on developing odometry covariance 
relies on incrementally updating the covariance matrix in small times steps.  The approach 
taken here integrates the noise theoretically over the entire path length to produce simple 
closed form expressions, allowing efficient covariance matrix updating after the 
completion of path segments. 
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1. Introduction 

Odometry is the measurement of wheel rotation.  When odometry measurements are 
known as a function of time from two wheels on a common axle, the position and 
orientation of the centre of the axle can be determined as a function of time.  Practical 
implementations of this approach where both time and wheel increments are discretised are 
used as one estimate of a mobile robot's position and orientation [Wang, 1988 #87].  With 
time, however, errors accumulate in odometry localisation, due to wheel slippage and 
measurement error in rotation and distance between wheels, and non-continuous sampling 
of wheel increments.  It is therefore necessary to use in addition some external referencing 
of position to correct for accumulating odometry errors. 
 This technical report develops a simple statistical model for the errors in estimation 
of position and orientation of a mobile robot using odometry.  Once the errors are 
characterised, other sensor data can be combined sensibly in the estimation of position, 
using the Extended Kalman Filter [Kleeman, 1992 #100; Jazwinski, 1970 #117].  A closed 
form error covariance matrix is developed for (i) straight lines and (ii) constant curvature 
arcs and (iii) turning about the centre of axle of the robot.  Other paths can be composed of 
short segments of constant curvature arcs without great loss of accuracy.  The model 
assumes that errors are exclusively random zero mean white noise in the measurement of 
distance travelled by each wheel.  Systematic errors due to wheel radius and wheel base 
measurement are ignored, since these can in theory be removed by calibration.  Previous 
work on developing odometry covariance relies on incrementally updating the covariance 
matrix in small times steps.  The approach taken here integrates the noise theoretically 
over the entire path length to produce simple closed form expressions, allowing efficient 
covariance matrix updating after the completion of path segments. 
 

B

 
 

Figure 1 -  Wheel Geometry. 
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2. Odometry Error Assumptions 

The odometry error of a wheel incurred in one unit of travel is assumed to be randomly 
distributed with zero mean and to be independent of the odometry error incurred in the 
next or previous unit of travel.  The variance of the cumulative error is then the sum of the 
variance of each independent segment and is therefore proportional to the distance 
travelled.  The error variances for the left and right wheels σL

2  and σR
2  can then be 

expressed as: 
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where d  and d  are the distances travelled by each wheel, and k  and k  are constants. L R L
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3. Straight Line Motion 

The robot wheels are controlled to travel at the same speed as measured by wheel 
odometry with the aim of following a straight line path.  In reality errors in odometry mean 
that the path deviates randomly from a straight line.  As shown in figure 2, there are three 
errors in the path: (i) the error in distance travelled along the line, es, (ii) the error 
perpendicular to the line, ep, and (iii) the error in heading angle eθ.  Each of these errors is 
characterised in terms of the basic odometry errors of each wheel.  Initially, the errors are 
respectively es(0), ep0) and eθ(0) with an initial covariance matrix given by: 
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desired  straight line es

ep
eθ

 
 

Figure 2 - Definition of Errors in Straight Line Path - the robot path is shown as the 
dashed line. 

Below, the effect of propagating these errors and the introduction of new errors is derived 
for a straight line motion.  The problem is tackled by breaking up the trajectory of the 
robot into discrete small segments where the robot travels a distance of ∆d.  The segments 
are indexed so that the robot angle error at the end of the kth segment is denoted by eθ(k).  
The errors in odometry of the left and right wheels are denoted by eL and eR, and the 
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distance between wheels by B as shown in Figure 1.  The error introduced in θ after a 
segment ∆d of distance is denoted by e∆θ .  Therefore 
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From equation (3) and the assumption that odometry errors are independent, with respect 
to  time, and with respect to wheels, the variance of the angle, σθ

2 is given by 
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where d is the total distance travelled and is given by k∆d.  The perpendicular distance 
error is given approximately by 
 
 e k e k d e kp p( ) ( ) ( )≅ − + −1 1∆ θ  (5) 

 
where the angle error is assumed to be small and constant throughout the segment.  This 
approximation is good when angle errors are kept small and the segment size is small 
enough so that new angle errors introduced into the segment are insignificant compared to 
the current angle error.  From equations (3) and (5) and rearranging 
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From the assumptions of independence of errors and equation (6), the variance of the 
perpendicular distance error, σ p

2  is given by 
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Note that the expression for the sum of integer squares can be proven by mathematical 
induction on k.  In the limit as ∆d approaches zero and k∆d is the total distance of travel d, 
the expression in equation (7) reduces to 
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The variance of the perpendicular error is now seen as dependent on the cube of distance 
rather than just distance as is the case for the angle error.  This can be understood by 
observing that the perpendicular errors accumulate from an ever increasing angle error 
translated into perpendicular distance error by the movement. 
The error in distance straight along the path for the kth segment, es(k) is given by 
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where the approximation is valid for small heading angle errors.  The corresponding 
variance is then 
 

 σ σs s
Lk d k k2 2
2 2

0
4

( ) ( )= + R+  (10) 

 
The off-diagonal covariances are now evaluated.  From equations (3) and (9) 
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and from equations (9) and (6) 
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In the limit as k approaches infinity 
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From equations (9) and (3) 
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In the limit as k approaches infinity 
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In summary, the standard deviation of angle error and distance along the path increase with 
the square root of distance while the perpendicular standard deviation increase as a power 
1.5 with distance.  The constants of proportionality all can be related back to the basic 
odometry error statistics on each wheel.  If both wheels have the same error statistics, then 
only the perpendicular distance error and angle errors are correlated with a constant 
correlation coefficient of σ σ σθ θp p

2 2 3 2 0 87= ≅ . . 

4. Rotation About the Centre of Axle of the Robot 

The robot wheels are controlled to travel in opposite directions at equal speed as measured 
by the odometry, with the aim of turning through an anti-clockwise angle α at one position 
with respect to the centre of the axle.  The starting angle with respect to the X-axis is 
assumed to be β, as shown in figure 3.  Errors in odometry mean that the point of turning 
moves from its starting position and the total angle turned is not exactly α. 
 

X-axis

α

β

Starting angle

Final angle
Major axis

Minor axis 

 
Figure 3 - Definition of Starting and Final Angles, and Major and Minor Axes. 

 
Again small segments of motion are considered.  Each segment now is a change of angle 
∆θ=α/k.  The error in angle, eα is examined first. 
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The variance of this error is given by 
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To determine the covariance matrix of errors in position of the centre of axle, two 
orthogonal axes are first defined as shown in figure 3.  The major axis is defined to be at 
an angle of β+α/2 and the minor axis at the angle of  β+α/2+ π/2.  The errors of the axle 
centre are derived with respect to these axes, since these components will be shown to 
have zero covariance. 
 
As the robot rotates, it is only the common mode or sum of wheel increments that 
contribute to the axle centre error.  These errors are always in the direction or opposite 
direction to that at which the robot faces at any instant.  As the angle θ moves from −α/2 to 
α/2 with respect to the major axis, the major axis error eM(k) is given by1 
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The variance of the major axis component is given by 
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In the limit as ∆θ approaches zero, equation (19) becomes an integral as follows: 
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The minor axis error, em(k) is derived in a similar way: 
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Again taking limits introduces an integral: 

                                                 
1 We have ignored the second order effect of angle error in cos θ(k).   

 8 



 

 

σ σ θ

σ θ θ

σ α α

α

α

α

α

m m L R

m L R

m L R

k k k B d

k k B

k k B

2 2 2 2 2

2

2

2 2 2

2

2

2 2 2

0
2

0
2 2

2
4

0
2 2

( ) ( ) ( ) sin ( )

( ) ( ) sin

( ) ( ) sin

/

/

/

/

= + +

= + + −

= + +
−

−

−

θ

 (22) 

 
To show that the major and minor components have covariance of 0, the expectation of 
eMem is examined.  Note that 
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Taking expectations of equation (18) multiplied by equation (21), and taking the limit: 
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That is, the covariance contribution between the major and minor axis components is zero.  
Symmetry arguments could be applied to achieve the same result, and in fact this was the 
method for choosing the axes in the first place.  The covariance between the angle and the 
major and minor axes are now investigated: 
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In the limit as ∆θ approaches zero, the summation becomes an integral as follows: 
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Similarly, it follows that 
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That is, there is no correlation between the angle and minor axis errors. 
 

5. Extension to Arbitrary Radius Arcs 

In this section we consider the case of the wheeled vehicle traversing an arc of finite radius 
R.  Figure 4 shows the propagation of an error in the direction of motion after traversing an 
arc of angle ∆θ.  The result is a perpendicular error of −es sin ∆θ  and a straight ahead error 
of es cos∆θ. 

∆ θ

∆ θ

es

es sin ∆ θ

es cos ∆ θ

Nominal centre

Actual centre
es

 
 

Figure 4 Propagation of straight error in arc move of angle ∆θ. 
 
The propagation of a perpendicular error e  is shown in Figure 5.  The result is a 
perpendicular error of e

p

p cos∆θ  and a straight ahead error of ep sin ∆θ .  The propagation of 

straight and perpendicular errors can be seen to be a rotation through the angle ∆θ .  The 
propagation of an angle error e  through the same arc is shown in Figure 6 and is much 

more complex in the geometry. 
θ

 10 

LK
Old stuff about coordinate transformationUsing a coordinate transformation, T, that rotates through the angle ???????, the covariance matrix, P, for the X and Y components can be determined.  In our case we have (ignoring initial conditions):  (32) 



Actual centre

Nominal centre

∆ θ

e p sin ∆ θ

e p

e p

∆ θ

e p cos ∆ θ

 
Figure 5 -  Propagation of perpendicular error in arc move of angle ∆θ. 

 

∆ θ

2 2R sin ( / )∆ θ

2 2 2 2( sin ( / ))sin ( / )R e∆ θ θ

R eθ

e θ− ∆
2

θ

 
Figure 6 -  Propagation of angle error in arc move of angle ∆θ and radius R. 

 
On close consideration of the small triangle in the upper bubble, the error length is 

4 2 2R esin( / )sin( / )∆θ θ  which is at an angle of eθ θ− ∆
2

 to the radial direction at the end 

point.  For small angle errors and angular increments ∆θ, the perpendicular error is 
approximated by  
 
 4 2 2 2 2 2R e e R esin( / )sin( / ) cos(( ) ) sin( / )∆ ∆ ∆θ θ θθ θ θ− ≅  (28) 
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 and the tangential error is approximated by 
 
 4 2 2 2 0R e esin( / )sin( / )sin(( ) )∆ ∆θ θθ θ − ≅  

 
This gives the following iterative relationships on errors: 
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We define the complex error E(k) as follows: 
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This allows rewriting of the first two iterative expressions of (29) as: 
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In (34) the limit as ∆θ → 0  is evaluated using L'Hopital's Rule2.  Rewriting equation (33) 
and simplifying with the real and imaginary versions of the limits in (34) gives: 
                                                 
2 When the numerator and demominator of a limit approach zero they can be replaced by 

their derivatives with respect to the limiting variable. 
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−

=

−

=

−

=

−

∑ ∑

∑ ∑

0 0 0 1 1 1 1

0 0 0 1 1

0

0

2

0

1

0

2

0

1

α α α θ

α α α θ θ

θ θ

θ θ

θ θ

∆

∆

∆ ∆

∆ ∆

+
=

−

∑e i
i

k

∆θ ( )
0

1

θ
. (35) 

or in matrix form: 
 
e(k) e( ) en( )

en( )

= + − −

=
−

−
−

=

=

−

∑Φ Ψ( )

Φ Ψ( ) =

0 1

1

0 0 1

1

1 0

1

1

i k i

R
R i

R i i
R i i i

e i
e i

i

k

d

∆

∆
∆ ∆

∆ ∆ ∆

θ

α α α
α α α θ

θ θ
θ θ θwhere 

cos sin ( cos )
sin cos sin ,

cos( ) cos( )
sin( ) sin( ) ,

( )
( )

 (36) 

 
The error covariance matrix is then 
 

 
P( ) e( ) e( ) e( )

P( ) Q( )

k Cov k E k k

i R i i

T

i

k

= =

+
=

−

∑

( ) [ ]

= Φ Φ Ψ( ) Ψ( )Τ0
1

1

∆ ∆ ∆θ θ θ Τ
 (37) 

where 

     R i
E e i E e i e i

E e i e i E e i
R

s k s k
B

s k s k
B

s k s k
B

s k s k
d

d d

R R L L R R L L

R R L L R R L L
∆ ∆∆ ∆

∆

θ θθ θ

θ

Q( ) = =

+ −

− +
[ ( )] [ ( ) ( )]

[ ( ) ( )] [ ( )]

( ) ( )

( ) ( )

2

2

2 2

2

2 2

2 2 2 2
2

2 4

 

(38) 
 
and s RL ∆θ  is defined to be the distance travelled by the left wheel with an angle change 

of ∆θ .  Therefore the angle subtended by the left wheel is given by 
 

 
∆ ∆

∆
θ θ

θ
=

−

⇒ = − = +

s R
R B

s B
R

similarly s B
R

L

L R

( )

,

2

1
2

1
2

 (39) 

 
The radius of curvature is assumed to be negative for arcs with a centre to the right of the 
heading direction. 
 In the limit as ∆θ  approaches zero and k approaches infinity, we can evaluate (37) as 
the integral: 
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 P(k) P( ) Q= Φ Φ Ψ( ) Ψ( )Τ0
0

+ ΤR sign d( )α θ θ θ
α

 (40) 

 
where sign(x)  is +1 for x>0 and -1 for  x<0.  The integral evaluates to the following: 
 

Ψ( ) Ψ( )Τθ θ θ
ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

ρ α α α α α α α α

ρ α α

α θ

θ

θ θ θ

Q d

s k s k R
B

s k s k R
B

s k s k R
B

s k s

s sp s

sp p p

s p

s
R R L L

R R L L

p R R L L R R L

0

2

2

2

2
2 2 2

2
2 2

2 2 2
2

2
2

4
6 8 2 2 2

4 4
4 2 2

2 2
4

1
4

=

=
+

− + +
+ ☺+ − − −

=
−

+ + ☺− −

sin sin sin sin sin

sin k R
B

s k s k
B

s k s k R
B

s k s k R
B

s k s k
B

s k s k R
B

s k s k
B

L

R R L L

sp R R L L

s R R L L R R L L

p R R L L R R L L

2

2
2 2

2

2 2
2

2

2 2
2

2 2

2 2
2

2 2

3 4 2
4

2 1
16

2

1 1
2

=
+

= +
− +

+
−

= + − + −

= − + − −

ρ
α

ρ α α α

ρ α α α

ρ α

θ

θ

θ

cos cos cos

sin sin

cos

 
  . (41) 
It has been shown by the author that in the limit as the arc approaches a straight line (ie R 
approaches infinity, α approaches zero with Rα=d constant)  the results of equation (41) 
approach the straight line results presented in Section 3. 

6. Example Calculation of the Odometry Covariance Matrix 

In this section an example robot path is used to illustrate the results of the previous 
sections.  The path shown in Figure 7 consists of a straight line, turn on the spot, an arc of 
radius twice the wheel base 2B and an arc of radius B/4, where B is 0.5 m.  The covariance 
matrix is calculated after each move.  To facilitate the calculations, we require a 
transformation matrix T(θ) which represents a rotation of the X-Y coordinate system 
through an angle θ.  Suppose we represent our robot position and orientation with 
x=[x y θ]T, then T(θ) is given by: 
 

 T( )
cos sin
sin cosθ

θ θ
θ θ=

− 0
0

0 0 1
 (42) 

 
Note that the inverse and transpose of T are the equal. 
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(0,0) (2,0)

(3,1)

(3.125,1.125)

A B

C

D

E

 
 

Figure 7 -  Example robot path with (x,y) coordinates marked (in metres).  The left 
and right wheel paths are shown dotted. 

 
The covariance matrix results presented in Sections 3 and 5 are with respect to tangential 
coordinates for lines and arcs.  Therefore coordinates need to be rotated by −θ to convert to 
X-Y cartesian coordinates, where θ is the heading angle of the robot after the path 
segment.  Thus if the covariance matrix P  is with respect to tangential coordinates, then 
the cartesian covariance matrix, P  is given by 

sp

xy

 
P T e T e T e e T T P Txy sp sp sp sp sp= − − = − − = − −Cov CovT T T T[ ( ) ( ( ) ) ] [ ( ) ( ) ] ( ) ( )θ θ θ θ θ θ  (43) 

 
The results for straight line paths of Section 3 are summarised here in matrix form.  The 
distance d is positive when moving in the direction of the robot and negative when the 
robot moves backwards.  The covariance after the straight line move is the addition of the 
propagation of the initial covariance P  and the contribution of noise along the path 
itself, Q : 

sp ( )0

line ( )d
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P P Q

Q

sp line sp line line

line

line

( ) ( ) ( ) ( ) ( )

( )

( )

( ) ( )

( ) ( ) ( )

( ) ( )

k d d d

d d

d d

k k d k k
B

k k
B

d k k
B

d k k
B

d k k
B

k k
B

d k k
B

k k
B

T

R L R L R L

R L R L R L

R L R L R L

= +

=

+ − −

− +

− + +

Φ Φ

Φ =

0

1 0 0
0 1
0 0 1

4 4 2

4 3 2

2 2

2 2 2 2 2 2

2 2 2 2 2

2

2 2

2

2 2 2 2

2

2 2

2

where  

and 

 (44) 
 

+

The results are generated from MATLAB scripts which are included at the end of this 
section.  Error ellipses are generated for X-Y errors at the end of each segment and due to 
the noise introduced along each segment and are plotted in Figures 8 and 9.  Covariance 
matrices are symmetric and therefore, from linear algebra, can be diagonalised using an 
orthonormal basis (ie by changing coordinate system to these unity orthogonal vectors we 
achieve decoupling of the error contributions since their covariance matrix is diagonal).  
The basis vectors are the eigenvectors and these form the axes of the error ellipses.  The 
lengths of the axes are the square root of the eigenvalues and correspond to standard 
deviations of the independent noise contribution in the direction of the eigenvector.  For 
the purposes of displaying the results,only X-Y errors are shown. 
 

A

Error Ellipses corresponding to 50 standard deviations

B

D

E

A to B
C to D

B to C

D to E

C

 
Figure 8 - Error Ellipses for each path segment and at the end of each segment.  

k k mL R= = −10 3 1
2 , B=0.5 m. 
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Error Ellipses corresponding to 50 standard deviations

A

A to B

B to C

B
C

D to E

C to D D

E

 
Figure 9 - Error Ellipses for each path segment and at the end of each segment.  

k m k mL R= = ×− −10 2 103 31
2

1
2   B=0.5 m. 

 
Tables I and II list the covariance matrices corresponding to Figures 8 and 9. 
 

TABLE I    k k mL R= = −10 3 1
2 , B=0.5 m 

Location Pxy  

A 0 0 0
0 0 0
0 0 0

 

A to B 
10

0 01 0 0
0 2133 1600
0 1600 1600

4− ×
.

. .

. .
 

B 
10

0 01 0 0
0 2133 1600
0 1600 1600

4− ×
.

. .

. .
 

B to C 
10

0 0098 0 0062 0
0 0062 0 0098 0

0 0 3142

5− ×
. .
. .

.
 

C 
10

0 0110 0 0006 0
0 0006 0 2143 0 1600

0 0 1600 1914

4− × −
−

. .

. . .
. .
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C to D 
10

0 0346 0375 0 0507
0 0006 0 0589 0 0750

0 0 0750 0 1257

4− ×
− −. . .

. . .
. .

 

D 
10

0 2370 0 3883 0 2421
0 3883 0 7846 0 4264
0 2421 0 4264 0 3171

4− ×
− −

−
−

. . .
. . .
. . .

 

D to E 
10

0 0074 0 0047 0
0 0047 0 0123 0 0393

0 0 0393 0 3142

5− × −
−

. .

. . .
. .

 

E 
10

0 3032 0 4763 0 2817
0 4763 0 8974 0 4700

0 2817 0 4700 0 3485

4− ×
−

− −
−

. . .
. . .

. . .
 

 
TABLE II    k m kL R m= = ×− −10 2 103 31

2
1

2 , B=0.5 m 

Location Pxy  

A 0 0 0
0 0 0
0 0 0

 

A to B 
10

0 0250 0 0600 0 0600
0 0600 0 5333 0 4000
0 0600 0 4000 0 4000

3− ×
. . .
. . .
. . .

 

B 
10

0 01 0 0
0 2133 1600
0 1600 1600

4− ×
.

. .

. .
 

B to C 
10

0 0245 0 0156 0 0750
0 0156 0 0245 0 0750
0 0750 0 0750 0 7854

5− ×
−
−

− −

. . .

. . .
. . .

 

C 
10

0 0275 0 0616 0 0675
0 0616 0 5358 0 4075
0 0675 0 4075 0 4785

4− ×
−
−

− −

. . .

. . .
. . .

 

C to D 
10

0 0614 0 0797 0 0795
0 0797 0 1694 0 1875
0 0795 0 1875 0 2670

4− ×
− −

−
−

. . .
. . .
. . .

 

D 
10

0 0432 0 0837 0 0002
0 0837 0 1999 0 1074
0 0491 0 1074 0 0746

3− ×
− −

−
−

. . .
. . .
. . .

 

D to E 
10

0 0013 0 0015 0 0056
0 0015 0 0043 0 0184
0 0056 0 0184 0 1021

4− ×
−
−

− −

. . .

. . .
. . .
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E 
10

0 0568 0 1042 0 0578
0 1042 0 2283 0 1185

0 0578 0 1185 0 0848

3− ×
−

− −
−

. . .
. . .

. . .
 

 
 
Shown below is a MATLAB script RUN.M and functions to evaluate the covariance 
matrices.  Output from RUN.M is also shown for different sets of kl and kr. 
 

Pxy = T(-angle)*P*T(-angle)' ;********* start of RUN.M ****** 

[V,D] = eig(Pxy(1:2, 1:2)) kl = 1e-3 

sqrtD=sqrt(D) kr = 2e-3 

Pdiff = arc_cov(zeros(3,3), dl, dr, kl, kr, B); 

Pdiffxy = T(-angle)*Pdiff*T(-angle)' 

B = 0.5 

d = 2 

[V,D] = eig(Pdiffxy(1:2, 1:2)) angle = 0 

sqrtD=sqrt(D) P=zeros(3,3); 

P = line_cov(P,kl, kr, B, d); 

%[V,D] = eig(P) 

a = pi/2; Pxy = P 

dl= ra_to_dl(0.125, a, B); [V,D] = eig(Pxy(1:2, 1:2)) 

sqrtD=sqrt(D) dr =ra_to_dr(0.125, a, B); 

P = arc_cov(P, dl, dr, kl, kr, B); 
a = pi/2; angle = angle + a; 
dl= ra_to_dl(1e-6, pi/2, B); Pxy = T(-angle)*P*T(-angle)' 
dr =ra_to_dr(1e-6, pi/2, B); [V,D] = eig(Pxy(1:2, 1:2)) 
P = arc_cov(P, dl, dr, kl, kr, B); 

angle = angle + a; 
sqrtD=sqrt(D) 

Pdiff = arc_cov(zeros(3,3), dl, dr, kl, kr, B); 

Pdiffxy = T(-angle)*Pdiff*T(-angle)' Pxy = T(-angle)*P*T(-angle)' 

[V,D] = eig(Pxy(1:2, 1:2)) 

sqrtD=sqrt(D) 
[V,D] = eig(Pdiffxy(1:2, 1:2)) 

sqrtD=sqrt(D) 
Pdiff = arc_cov(zeros(3,3), dl, dr, kl, kr, B); 

Pdiffxy = T(-angle)*Pdiff*T(-angle)' ;************ end of RUN.M ************* 

function Transf=t(theta); [V,D] = eig(Pdiffxy(1:2, 1:2)) 

Transf = eye(3); sqrtD=sqrt(D) 

Transf(1,1) = cos(theta); 
a=-pi/2; Transf(2,1) = sin(theta); 
dl= ra_to_dl(-1, a, B); Transf(1,2) = -Transf(2,1); 
dr =ra_to_dr(-1, a, B); Transf(2,2) = Transf(1,1); 
P = arc_cov(P, dl, dr, kl, kr, B) ;************************************ 
angle = angle + a; function P=line_cov(P, kl, kr, B, d); 
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        C(1,1) = ksum*R*R/B/B*(3*a/2-

2*sin(a)+sin(2*a)/4)+ksum/4*(a/2+sin(2*a)/4) + 

kdiff*R/B*(sin(a)-a/2-sin(2*a)/4); 

%function P=line_cov(P, kl, kr, B, d); 

C=eye(3); 

kl2 = kl*kl; 

        C(1,2) = ksum*(R*R/B/B*(3-

4*cos(a)+cos(2*a))/4+(cos(2*a)-

1)/16)+kdiff*R/4/B*(2*cos(a)-cos(2*a)-1); 

kr2 = kr*kr; 

C(1,1) = d*(kl2+kr2)/4; 

C(1,2) = d^2*(kr2-kl2)/4/B; 

 C(1,3) = ksum*R/B/B*(a-

sin(a))+kdiff*sin(a)/2/B; 

C(1,3) = d*(kr2-kl2)/2/B; 

C(2,1) = C(1,2); 

 C(2,1) = C(1,2); C(2,2) = d^3*(kl2+kr2)/3/B/B; 

 C(2,2) = (a/2-

sin(2*a)/4)*(ksum*(R*R/B/B+0.25)-kdiff*R/B); 

C(2,3) = d^2*(kr2+kl2)/2/B/B; 

C(3,1) = C(1,3); 

 C(2,3) = (ksum*R/B/B-kdiff/2/B)*(1-

cos(a)); 

C(3,2) = C(2,3); 

C(3,3) = d*(kl2+kr2)/B/B; 

 C(3,1) = C(1,3);  

 C(3,2) = C(2,3); phi=eye(3); 

 C(3,3) = ksum/B/B*a; phi(2,3) = d; 

 P = phi*P*phi'+C; 

 if (a < 0) C = -1 * C;  

        end  

function P=arc_cov(P, dl, dr, kl, kr, B);  

% propagate P %function P=arc_cov(P, dl, dr, kl, kr, B); 

        Phi=eye(3); % update covariance matrix P for arc of left 

distance dl, and right dr         Phi(2,2)=cos(a); 

        Phi(1,1)=Phi(2,2); % with robot parameters kl, kr, B wheel base 

        Phi(1,2) = sin(a); % Assumes that P is in tangential coordinates and 

is left in tangential  Phi(1,3) = R*(1-cos(a)); 

 Phi(2,1) = -sin(a); % coordinates on return 

 Phi(2,3) = R*sin(a);  

 P = Phi*P*Phi'+C; C=eye(3); 

 R = B*(dr+dl)/2/(dr-dl); 

function dl = ra_to_dl(R, a, B); a = (dr-dl)/B; 

%function dl = ra_to_dl(R, a, B); kRsr = abs(B*dr/(dr-dl)*kr*kr); 

%converts radius and angle to left distance dl kRsl = abs(B*dl/(dr-dl)*kl*kl); 

dl = a*(2*R-B)/2; ksum = kRsr + kRsl; 

 kdiff = kRsr - kRsl; 

function dr = ra_to_dr(R, a, B);  

%function dr = ra_to_dr(R, a); 

%converts radius and angle to left distance dr 
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dr = a*(2*R+B)/2;     0.0000   -0.0000    0.3142 

 V = 

;*********** Results from running RUN.M     0.7071    0.7071 

   -0.7071    0.7071 run 

 kl =  1.0000e-003 

D =  1.0e-006 * kr =  1.0000e-003 

    0.0357         0 B =  0.5000  

         0    0.1607 d =     2 

sqrtD =  1.0e-003 * angle =     0 

    0.1889         0 Pxy =  1.0e-004 * 

         0    0.4008     0.0100         0         0 

P =  1.0e-004 *          0    0.2133    0.1600 

    0.2370   -0.3883   -0.2421          0    0.1600    0.1600 

   -0.3883    0.7846    0.4264 V = 

   -0.2421    0.4264    0.3171      1     0 

Pxy =  1.0e-004 *      0     1 

    0.2370   -0.3883   -0.2421 D =  1.0e-004 * 

   -0.3883    0.7846    0.4264     0.0100         0 

   -0.2421    0.4264    0.3171          0    0.2133 

V = sqrtD = 

    0.8878   -0.4603     0.0010         0 

    0.4603    0.8878          0    0.0046 

D =  1.0e-004 * Pxy =  1.0e-004 * 

    0.0357         0     0.0110    0.0006    0.0000 

         0    0.9859     0.0006    0.2143   -0.1600 

sqrtD =     0.0000   -0.1600    0.1914 

    0.0019         0 V = 

         0    0.0099     1.0000    0.0031 

Pdiffxy =  1.0e-004 *    -0.0031    1.0000 

    0.0346   -0.0375   -0.0507 D =  1.0e-004 * 

   -0.0375    0.0589    0.0750     0.0110         0 

   -0.0507    0.0750    0.1257          0    0.2143 

V = sqrtD = 

    0.8089   -0.5879     0.0010         0 

    0.5879    0.8089          0    0.0046 

D =  1.0e-005 * Pdiffxy =  1.0e-005 * 

    0.0731         0     0.0098    0.0062    0.0000 

         0    0.8616     0.0062    0.0098   -0.0000 
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    0.0480    0.2773    0.2080 sqrtD = 

    0.0480    0.2080    0.2080     0.0009         0 

V =          0    0.0029 

    0.9849    0.1733 Pxy =  1.0e-004 * 

   -0.1733    0.9849     0.3032   -0.4763    0.2817 

D =  1.0e-003 *    -0.4763    0.8974   -0.4700 

    0.0046         0     0.2817   -0.4700    0.3485 

         0    0.2858 V = 

sqrtD =     0.8744   -0.4852 

    0.0021         0     0.4852    0.8744 

         0    0.0169 D =  1.0e-003 * 

Pxy =  1.0e-003 *     0.0039         0 

    0.0143    0.0488   -0.0540          0    0.1162 

    0.0488    0.2786   -0.2140 sqrtD = 

   -0.0540   -0.2140    0.2488     0.0020         0 

V =          0    0.0108 

   -0.9844   -0.1760 Pdiffxy =  1.0e-005 * 

    0.1760   -0.9844     0.0074    0.0047   -0.0000 

D =  1.0e-003 *     0.0047    0.0123   -0.0393 

    0.0056         0    -0.0000   -0.0393    0.3142 

         0    0.2873 V = 

sqrtD =     0.8555    0.5178 

    0.0024         0    -0.5178    0.8555 

         0    0.0170 D =  1.0e-006 * 

Pdiffxy =  1.0e-004 *     0.0453         0 

    0.0128    0.0081   -0.0600          0    0.1511 

    0.0081    0.0128   -0.0600 sqrtD =  1.0e-003 * 

   -0.0600   -0.0600    0.4084     0.2128         0 

V =          0    0.3887 

    0.7071    0.7071 ¯ diary 

   -0.7071    0.7071 ¯ run 

D =  1.0e-005 * kl =  1.0000e-003 

    0.0464         0 kr =    0.0050 

         0    0.2089 B =    0.5000 

sqrtD = d =     2 

    0.0007         0 angle =     0 

         0    0.0014 Pxy =  1.0e-003 * 

P =     0.0130    0.0480    0.0480 
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    0.0000         0     0.0002   -0.0004   -0.0002 

         0    0.0014    -0.0004    0.0010    0.0006 

sqrtD =    -0.0002    0.0006    0.0004 

    0.0053         0 Pxy = 

         0    0.0376     0.0002   -0.0004   -0.0002 

Pdiffxy =  1.0e-004 *    -0.0004    0.0010    0.0006 

    0.0052    0.0089   -0.0450    -0.0002    0.0006    0.0004 

    0.0089    0.0257   -0.1196 V = 

   -0.0450   -0.1196    0.5969     0.9322   -0.3619 

V =     0.3619    0.9322 

    0.9370    0.3492 D = 

   -0.3492    0.9370     0.0000         0 

D =  1.0e-005 *          0    0.0012 

    0.0183         0 sqrtD = 

         0    0.2905     0.0051         0 

sqrtD =          0    0.0347 

    0.0004         0 Pdiffxy = 

         0    0.0017   1.0e-003 * 

¯ quit     0.0249   -0.0375   -0.0282 

 5091 flops.    -0.0375    0.0942    0.0975 

¯ run    -0.0282    0.0975    0.1257 

kl =  1.0000e-003 V = 

kr =    0.0020     0.9162   -0.4007 

B =    0.5000     0.4007    0.9162 

d =     2 D =  1.0e-003 * 

angle =     0     0.0085         0 

Pxy =  1.0e-004 *          0    0.1106 

    0.0250    0.0600    0.0600 sqrtD = 

    0.0600    0.5333    0.4000     0.0029         0 

    0.0600    0.4000    0.4000          0    0.0105 

V = Pxy = 

    0.9933    0.1157     0.0002   -0.0005    0.0003 

   -0.1157    0.9933    -0.0005    0.0012   -0.0006 

D =  1.0e-004 *     0.0003   -0.0006    0.0004 

    0.0180         0 V = 

         0    0.5403    -0.9194    0.3932 

sqrtD =    -0.3932   -0.9194 

    0.0013         0 D = 
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   -0.3979   -0.9174          0    0.0074 

D =  1.0e-003 * Pxy =  1.0e-004 * 

    0.0070         0     0.0275    0.0616   -0.0675 

         0    0.2362     0.0616    0.5358   -0.4075 

sqrtD =    -0.0675   -0.4075    0.4785 

    0.0026         0 V = 

         0    0.0154     0.9929    0.1185 

Pdiffxy =  1.0e-004 *    -0.1185    0.9929 

    0.0614   -0.0797   -0.0795 D =  1.0e-004 * 

   -0.0797    0.1694    0.1875     0.0201         0 

   -0.0795    0.1875    0.2670          0    0.5431 

V = sqrtD = 

    0.8834   -0.4686     0.0014         0 

    0.4686    0.8834          0    0.0074 

D =  1.0e-004 * Pdiffxy = 

    0.0191         0   1.0e-005 * 

         0    0.2116     0.0245    0.0156   -0.0750 

sqrtD =     0.0156    0.0245   -0.0750 

    0.0014         0    -0.0750   -0.0750    0.7854 

         0    0.0046 V = 

Pxy =  1.0e-003 *     0.7071    0.7071 

    0.0568   -0.1042    0.0578    -0.7071    0.7071 

   -0.1042    0.2283   -0.1185 D =  1.0e-006 * 

    0.0578   -0.1185    0.0848     0.0892         0 

V =          0    0.4017 

   -0.9042    0.4270 sqrtD =  1.0e-003 * 

   -0.4270   -0.9042     0.2986         0 

D =  1.0e-003 *          0    0.6338 

    0.0076         0 P =  1.0e-003 * 

         0    0.2775     0.0432   -0.0837   -0.0491 

sqrtD =    -0.0837    0.1999    0.1074 

    0.0028         0    -0.0491    0.1074    0.0746 

         0    0.0167 Pxy =  1.0e-003 * 

     0.0432   -0.0837   -0.0491 

Pdiffxy =  1.0e-004 *    -0.0837    0.1999    0.1074 

    0.0013    0.0015   -0.0056    -0.0491    0.1074    0.0746 

    0.0015    0.0043   -0.0184 V = 

   -0.0056   -0.0184    0.1021    -0.9174    0.3979 
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V = sqrtD =  1.0e-003 * 

    0.9224    0.3861     0.2551         0 

   -0.3861    0.9224          0    0.7020 

D =  1.0e-006 * ¯ quit 

    0.0651         0  2622 flops. 

         0    0.4928 

7. Simulation Results 

Monte-Carlo simulations studies have been performed on the odometry error covariance 
estimation results for two main reasons.  Firstly, there are approximations involved in the 
derivation of the results and the simulations will be able to verify that the approximations 
are reasonable.  Secondly, the errors need to be eliminated from the theoretical derivations 
and the simulation can verify the correctness of the derivations. 
 The simulation studies read a configuration file which specifies the left and right 
wheel movements defining the path, the wheel base B, the wheel noise constants kL and  kR 
and the sample frequency of the odometry position update.  A noise free path is calculated 
first to determine the end point position and orientation.  Statistics are calculated for errors 
in end points of paths where measurement noise is added to the wheel measurements on 
each sample.  The error covariance matrix for all the samples is calculated and printed.  
Also the mean of the errors is calculated to determine any bias that has been introduced.  A 
convenient form of the covariance matrix is also used whereby the square root of diagonal 
elements  and the correlation coefficient of diagonal elements3 are displayed.  This allows 
easy comparison of the simulation results and theoretical results. 
 
An example output file corresponding to Figure 8 follows: 
SampleRate=200.000000, B=0.500000, kl=0.001000, kr= 0.001000, 

MonteCarloRuns= 10000 

 time Leftdist Rightdist: 

   0.000000 0.000000 0.000000 

   2.000000 2.000000 2.000000 

   3.000000 1.607300 2.392700 

   4.000000 3.570800 3.570800 

   5.000000 3.374450 4.159850 

number of samples: 10000 

mean is:  

                                                 
3 The correlation coefficient is 

σ

σ σ
ij

i j
2 2

 and lies between -1 and +1. 
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   -1.997124e-05 

     5.32083e-05 

    3.183715e-05 

covariance matrix is:  

     2.97987e-05   -4.650919e-05    -2.76081e-05 

   -4.650919e-05    8.708272e-05     4.58468e-05 

    -2.76081e-05     4.58468e-05    3.436819e-05 

stand dev, correlation matrix is:  

        0.005459       -0.913007         -0.8627 

       -0.913007        0.009332         0.83804 

         -0.8627         0.83804        0.005862 

========== LK theoretical cov matrix:  

    3.031791e-05   -4.763405e-05   -2.817159e-05 

   -4.763405e-05    8.974219e-05    4.699783e-05 

   -2.817159e-05    4.699783e-05     3.48496e-05 

stand dev, correlation matrix is:  

        0.005506       -0.913208       -0.866688 

       -0.913208        0.009473        0.840389 

       -0.866688        0.840389        0.005903 

 
The results for 3 simulation runs are shown in Table III for the conditions matching Figure 
8.  The agreement between theory and simulation is within the statistical variation 
displayed by three runs. 
 

TABLE III - 10000 Monte-Carlo runs for k k mL R= = −10 3 1
2 , B=0.5 m 

 Means Covariance Matrix Stand dev/ Corr Matrix 
Theoretical 

results 
0 

0 

0 

 3.032e-5 -4.763e-5 -2.817e-5 

-4.763e-5  8.974e-5  4.700e-5 

-2.817e-5  4.700e-5  3.48496e-5 

0.005506 -0.913208 -0.8667 

-0.9132  0.009473 0.8404 

-0.8667  0.8404   0.005903 

Run 1 
(10000 

samples) 

-1.997e-5 

 5.321e-5 

 3.184e-5 

 2.980e-5 -4.651e-5 2.761e-5 

-4.651e-5  8.708e-5 4.585e-5 

-2.761e-5  4.585e-5 3.437e-5 

 0.005459 -0.9130 -0.8627 

-0.9130  0.009332  0.8380 

 0.8627  0.8380  0.005862 

Run 2 
(10000 

samples) 

 1.992e-5 

-2.702e-5 

-5.061e-5  

 3.018e-5 -4.715e-5 -2.813e-5 

-4.715e-5 8.884e-5 4.657e-5 

-2.813e-5 4.657e-5 3.476e-5  

0.005494 -0.9106 -0.8684 

-0.9106 0.009426  0.8380 

-0.8684 0.8380  0.005896  

Run 3 
(10000 

samples) 

 -3.199e-5 

 -2.236e-5 

 -4.512e-5  

 3.040e-5 -4.774e-5 -2.823e-5 

 -4.774e-5 8.995e-5 4.726e-5 

 -2.823e-5 4.726e-5 3.499e-5  

0.005513 -0.9131 -0.8657 

-0.9131 0.009484 0.8424 

-0.8657 0.8424 0.005915  
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Three more runs were conducted with the conditions of Figure 9 and the results are 
summarised in Table IV: 
 

 
TABLE IV - 10000 Monte-Carlo runs for k m kL R m= =0 001 0 0021

2
1. 2 , B=0.5 m .

 Means Covariance Matrix Stand dev/ Corr Matrix 
Theoretical 

results 
0 

0 

0 

5.680e-5  -0.000104 -5.782e-5 

-0.000104  0.000228  0.000119 

-5.782e-5 0.000119  8.477e-5 

0.007536 -0.9153 -0.8332 

 -0.9153 0.01511 0.8519 

 -0.8332 0.8519 0.009207  

Run 1 
(10000 

samples) 

-3.005e-5 

-0.000125 

-2.289e-5 

 5.656e-5 -0.000104 -5.743e-5 

-0.000104 0.000228  0.000118 

-5.743e-5  0.000118  8.398e-5 

0.00752 -0.9129 -0.8334 

-0.9129 0.01508 0.8519 

-0.8334 0.8519  0.009164 

Run 2 
(10000 

samples) 

-0.000119 

 7.654e-5 

 1.374e-5  

 5.536e-5 -0.000102 -5.667e-5 

-0.000102  0.000225 0.000117 

-5.667e-5  0.000117 8.427e-5 

0.00744 -0.9130 -0.8297 

-0.9130 0.0150 0.8512 

-0.8297 0.8512 0.00918 

Run 3 
(10000 

samples) 

-1.774e-5 

-7.531e-5 

 2.308e-5 

5.676e-5 -0.000104 -5.765e-5 

-0.000104 0.000227  0.000118 

-5.765e-5  0.000118  8.4560e-5  

0.007534 -0.9137 -0.8320 

-0.9137 0.01507 0.8511 

-0.8320 0.8511  0.009196 

 
The theoretical results derived in Sections 3, 4 and 5 depend on the absolute values of the 
errors being small.  To study the effect of larger errors, the noise variance has been 
increased to values of k m kL R m= =0 01 0 021

2
1

2. .  .  Table V summarises the results 
obtained. 

 
TABLE V - 10000 Monte-Carlo runs for k m kL R m= =0 01 0 021

2
1

2. . , B=0.5 m  

 Means Covariance Matrix Stand dev/ Corr Matrix 
Theoretical 

results 
0 

0 

0 

0.00568 -0.0104 -0.005782 

-0.0104 0.02283 0.01185 

-0.005782 0.01185 0.008477 

0.07536 -0.9153 -0.8333 

-0.9153 0.1511 0.8519 

-0.8333 0.8519 0.092069 

Run 1 
(10000 

samples) 

-0.005359 

-0.003173 

-8.374e-5 

 0.005586 -0.010132 -0.005629 

-0.010132 0.02239 0.011583 

-0.005629 0.011583 0.008284  

0.07474 -0.9060 -0.8274 

-0.9060 0.1496  0.8505 

-0.8274 0.8505 0.09102 

Run 2 
(10000 

samples) 

-0.006619 

-0.001239 

 0.000884  

 0.005623 -0.010224 -0.00566 

 -0.010224 0.022542 0.011663 

 -0.00566 0.011663 0.008374  

0.07499 -0.9081 -0.8248 

-0.9081 0.1501  0.8489 

-0.8248 0.8489 0.09151 
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Run 3 
(10000 

samples) 

-0.005757 

-0.003603 

-0.000882 

0.005695  -0.010359 -0.005843 

-0.010359  0.022763 0.011943 

-0.005843  0.011943 0.008611 

0.07546 -0.9098 -0.8344 

-0.9098 0.1509 0.8530 

-0.8344 0.8530 0.09280 

 

8. Conclusion and Future Work 

Based on a simple model for odometry errors in each wheel of a robot, results have been 
derived that describe the error statistics of robot trajectories in straight lines, arcs and 
turns.  The results allow efficient computation of the odometry covariance matrix at the 
end of each path segment of the robot.  Previous approaches rely on updating the 
covariance matrix after small time increments [Wang, 1988 #87]. 
 The model of odometry errors allows sensible fusing of localisation data from other 
sensors, since the relative errors of each can be assessed.  A Kalman Filter can be 
employed in the merging process. 
 The results of the covariance estimates for constant curvature paths can be applied to 
a varying curvature path by breaking the path up into small segments of approximately 
constant curvature. 
 Simulation studies have been employed to confirm the mathematical correctness of 
the derivations and study the limitations of approximations employed in the derivations.  
Future work will attempt to experimentally verify the results derived in this report using a 
mobile robot.  A calibration technique for determining the error model parameters will be 
investigated. 
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Mun Li's effort - ignore it.The following constants are used to arrive at the error variances in a straight line motion:  Kd is the odometry distance error in meters per square root of meters in direction of motion,  Kp is the odometry distance drift m per sqrt(m) perpendicular to motion,  Kq is the odometry angular drift from direction of motion in radians per sqrt(m)Thus if the robot has moved a distance D at a bearing angle of ?R, the distance drift in the direction of motion, Ed and that perpendicular to motion Ep are:  The corresponding variance ?2x is obtained by summing the squared contributions of the drifts Ed and Epin the X direction:   The variance ?2y is obtained in a similar manner:   (8.27)By using the following definition [Smith, 1986]:  where  and considering the two-dimensional positional uncertainty ellipse with  Ed and Ep as its axes, the following equation is obtained [Smith, 1986]:  Solving for ?xy yields   The variance corresponding to angular drift is assumed to be independent of the distance drifts and is   The following assignments are used for turning motion:  Ktd is the odometry distance drift m per sqrt(radian) of turning angle,  Kt? is the odometry angular drift in radian per sqrt(radian) of turning angle.If the robot turns an angle ??R while having a bearing angle of ?R, the major and minor axes of the resultant two-dimensional ellipse for positional uncertainty are the contributions of the errors along the direction ?R+ ??R/2 and its normal  Using the same derivation as in the case of a straight line motion, the resultant noise covariances are [Kleeman, 1995c]:         The angular drift is just   
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