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ABSTRACT 

   In this paper, an approach to image denoising is proposed by utilizing the interscale 

dependency of wavelet coefficients. We first analyze a new property of parent/children-

type statistics in the wavelet domain. Then, a Gaussian mixture model (GMM) is 

employed to fit this statistical property, where the children’s variance field is estimated 

by a linear relation involving their parent. Lastly, MMSE estimates for the noisy wavelet 

coefficients are obtained. We demonstrate by experimental comparisons that this 

approach compares favorably with other competing approaches. In particular, though our 

approach does not outperform other approaches at all noise levels, there are occasions 

when it does outperform other approaches and where it may fall short of outperforming 

other approaches, the difference in performance is not large. 

Keywords: Wavelet transform, image denoising, interscale statistics. 

I.  INTRODUCTION 

  Recently, much effort [1-3, 5, 7-9] has been devoted to signal or image Bayesian 

denoising in wavelet domain. Wavelet-based image denoising typically consists of three 

steps: discrete wavelet transform (DWT), denoising processing of the noisy wavelet 

coefficients, and inverse discrete wavelet transform (IDWT). Irrespective of what wavelet 

is employed, the first and the last steps are 1-1 mappings, and are of no interest in this 

paper. So, only the processing of the noisy wavelet coefficients will be studied in the 

following. Specifically, in a general Bayesian wavelet shrinkage approach, a prior is first 
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specified for the wavelet coefficients of the unknown image, and then Bayesian 

estimation is computed. 

  Consider a signal x, which is contaminated with noise n, so that one observes nxy += . 

Assume ),0(~ 2
xNx σ , ),0(~ 2

nNn σ . The well-known minimal mean squared error 

(MMSE) estimation is as follows [7]: 
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However, the simple Gaussian prior cannot fit well the marginal density of wavelet 

coefficients, which tend to be dominated by a few large ones. The actual density of 

wavelet coefficients has a marked peak at zero and heavy tails, and it is strongly non-

Gaussian. Moreover, wavelet coefficients cannot be independently treated, although 

orthogonal wavelet transform can be viewed as an approximate Karhunen-Loeve 

transform and tends to approximately decorrelate the image. The reason is that other joint 

statistics, such as clustering, persistency, decay property across scale, and strong 

persistence at finer scales [9], exist between wavelet coefficients of real-life images. 

  Statistical properties in the wavelet domain, like interscale dependency [5, 9] and 

intrascale dependency [7], have been successfully applied in image denoising. Especially, 

the hidden Markov tree (HMT) was employed by Crowse et al. [5] to capture the 

interscale dependency. A disadvantage of HMT is the computational burden of the 

training stage. In order to overcome this computational problem, a simplified HMT, 

named as uHMT [9], was proposed by introducing nine meta-parameters. Although the 

training stage is reduced in uHMT, its performance is close to that of the more 
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complicated HMT. The reason is that uHMT captures most interscale dependency of real-

life images by specifying the nine meta-parameters. 

  In this paper, we propose a simple pixel-adaptive approach to image denoising by 

utilizing these interscale dependencies. The complicated hidden Markov model is not 

needed in our approach. In section II, we review the marginal non-Gaussian property and 

the interscale statistical properties of wavelet coefficients. In section III, we propose an 

approach to image denoising by using interscale dependency. First, we give a true picture 

of the interscale statistics by studying the conditional density of the children on their 

parent. Then, a linear formula is used to estimate the variance field. Consequently, a 3-

modal GMM is employed to fit the non-Gaussian property of these conditional statistics. 

Finally, we apply MMSE estimator to get the estimates of noisy coefficients. In section 

IV, we analyze the performance of our approach and compare it with HMT and uHMT. 

Simulations show the effectiveness of our approach. 

II.  STATISTICS IN WAVELET DOMAIN 

  Here we review some statistical properties that are utilized in our approach. A good 

review can be found in [1, 9]. 

A. Non-Gaussian property 

  A four-level decomposition of the image Lena is shown in Fig.1, where white pixels 

denote large magnitude coefficients. A typical normalized histogram for wavelet 

coefficients of one subband can be seen in Fig. 2, which comes from subband LH1 of 

Lena. From fig. 2, a salient non-Gaussian property can be seen in the normalized 

histogram of the wavelet coefficients. An intuitive explanation for this non-Gaussian 

property is that real-world images typically consist of smooth regions and some 
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occasional edges. The smooth regions lead to near-zero coefficients and the edges give 

rise to a few large ones. 

  GMM [3] and generalized Gaussian distribution (GGD) [8] are the common tools for 

modeling this non-Gaussian property of wavelet coefficients. Although GGD is more 

accurate in fitting the actual density of wavelet coefficients than GMM, the latter is 

preferred, in this paper, for its simple form. In order to model this non-Gaussian property, 

Chipman et al. [3] assume that wavelet coefficients have a Gaussian mixture density: 

),0()1(),0(~| 222 τγτγγ NcNx −+                                       (2) 

where mixture parameter γ  has its own prior distribution pPP ==−== )0(1)1( γγ . 

  Given the mixture density as (2), MMSE estimator, x̂ , for the wavelet coefficient, y , 

is: 
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B. Interscale dependency 

  Interscale dependency can be easily observed from the interscale similarity in quad-tree 

decomposition of the image, such as fig. 1. Here, we summarize the analysis tool for this 

type of dependency: HMT and its variation, uHMT. In a HMT for a wavelet transform, 

each coefficient is modeled as a Gaussian mixture density: 
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mS Nmpxf σ                                            (4) 

whose components are associated with a hidden state variable S . The hidden state is 

depicted by T
SS pp )]1()0([=p . Markovian dependency between these hidden variables 

can be easily modeled due to the natural tree structure of DWT. By tying both within and 
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across trees, the HMT model is parameterized by the parent/children state transition 

matrix A , together with two mixture variances, mσ , for the wavelet coefficients at each 

scale and two probabilities for the root state variable at the coarsest scale. The transition 

matrix jA  (j denotes the level) is of the form: 
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A                                                    (5) 

The child’s state, cp , can be computed by transition matrix A  and its parent’s state, pp : 

pc App =  

  A drawback with the HMT is the computational cost. For every image, a training step is 

needed to get the parameters, such as mσ  for all scales, initial p  for the coarsest scale 

and A  for other scales. Therefore, uHMT [9] was proposed to simplify the HMT by 

introducing nine meta-parameters { }L
jLLLSSSLS pCCCC

LS 0
,,,,,,,, γγαα σσ=Θ . mσ , p  

and A  can be obtained from Θ . Both in the HMT and the uHMT, the crux lies in how to 

get the parameters, )(mpS  and 2
mσ , for each coefficient. With all these parameters 

known, the estimation, x̂ , for a wavelet coefficient, y , is of the following form: 
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III.  THE PROPOSED APPROACH 

  In order to get a truly pixel-adaptive estimator, we take a detailed look at the interscale 

dependency between children and their parent. An interesting property is that the 

children’s conditional density, on their parent, is also non-Gaussian, with a marked peak 

at zero and heavy tails. So, given their parent, wavelet coefficients are modeled as a 3-
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modal Gaussian mixture distribution in our approach. The crux of our approach lies in 

obtaining the conditional density, which shows the statistics of the interscale dependency 

between children and their parent. It consists of two steps: variance estimation and 

Gaussian mixture modeling. 

A. A true picture of the interscale dependency 

  An obvious property, easily observed from the wavelet quad-tree decomposition in fig. 

1, is its persistency between scales. A child cx  is probably large (small), if its parent px  

has a large (small) value. Consequently, the child has a large (small) variance, assuming 

it is of zero-mean. In order to get a true picture of the interscale dependency, we’ll study 

the conditional density of the children on their parent. This conditional density, 

)|( pc xxp , can be obtained as the normalized histogram of the children whose parent 

equals px .  Fig. 3 is a typical conditional density of the child in vertical band of level 1, 

whose parent lies between 10 and 11. This conditional density shows a non-Gaussian 

property, as the normalized histogram of the whole band. 

B. Variance estimation 

  An intuitive observation is that the children are of large/small variance if their parent 

has a large/small value. Fig. 4 shows this kind of dependency of level 1 on level 2 (the 

data are obtained from 11 images). Other levels share this near-linear property. In our 

approach, this dependency is utilized to estimate the variance field by the following 

simple, but practical, linear formula: BxA pc +=σ , where cσ  is the variance of the 

child cx  and px  is the value of the corresponding parent. Usually, in the same level, the 

horizontal band and the vertical band show similar statistics, while the diagonal band has 
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a smaller variance assuming the value of the parent is same, as it can be seen from fig. 4. 

So, the true model becomes bandlevelpbandlevelbandlevelc BxA ,,,, +=σ . For the coarsest level, no 

parent exists. The parent-on-child dependency is utilized to estimate the variance field of 

the coarsest level. A similar linear relationship is specified for the parent-on-child 

dependency, with different As and Bs. Table 1 lists the experimental parameters for A and 

B, which are obtained from 11 real-life images. 

C. Gaussian mixture model 

  Like the marginal density of wavelet coefficients, the conditional densities of )|( pc xxp  

and )|( cp xxp  also have the non-Gaussian property, which has a marked peak at zero 

and heavy tails. As in Chipman et al. [3], GMM is used to fit this type of non-Gaussian 

property. If the variance σ  for x is known, the following mixture model is specified to fit 

this non-Gaussian property, 

),0(),0(),0(~ 2
33

2
22

2
11 σσσ NaNaNax ++                                   (7) 

where 11 / nσσ = , σσ =2  and σσ 33 n= . To make the variance unchanged, the relation 

1/ 2
332

2
11 =++ naana  has to hold. We experimentally find that 6.01 =a , 3.02 =a , 

1.03 =a  and 5.231 == nn  work well for most of the bands and levels. Fig. 3 shows an 

example and its fitted mixture model. The solid line denotes the conditional density, the 

dotted one for the fixed mixture model, and the dashed one for the Gaussian model. The 

marked peak at zero and heavy tails suggest the correctness of the mixture model. Similar 

to (6), the following MMSE estimator is used to estimate the noisy coefficients 
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D. Noise 

 For a noisy image, the noise-free wavelet coefficients are unknown and it is impossible 

to obtain the true variances σ  of its children/parent in the model mentioned above. A 

substitute σ̂  for σ  has to be obtained from the noisy wavelet coefficients. In order to 

minimize the effect of noise, the following top-down strategy is employed in our 

approach. First, the detail coefficients of the coarsest level are estimated based on the 

average of the absolute value of its four noisy children. Then, from coarse to fine, the 

estimation of the parent px̂  is used to compute the variances of its children.  

IV.  RESULTS and CONCLUSION 

  As in [9], Daubechies’ length-8 wavelet D4 [6] is employed to decompose the images 

into four levels. To evaluate the proposed denoising scheme, we compare it with uHMT 

and HMT. In table 2-4, the results of PSNR for 11 images∗ [9] of 256×256 are listed. At 

noise level of 0.05 (table 2) and 0.1 (table 3), our approach performs better than uHMT, 

with an average improvement of 0.3~0.4dB; and slightly better than HMT, with an 

average improvement of 0.1~0.2 dB. From table 4, we can see that these three approaches 

perform approximately same when the noise is very strong.  

  A visual display of the image “bridge” can be seen in fig. 5-7, where the PSNR indexes 

of these three approaches are almost the same. The authors have conducted blind tests 

over a small number of colleagues and most regard the output from our approach to be 

slightly, but noticeably, better. For example, the shadow of the bridge and the waterfall in 
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the images are better preserved by our approach. So, although somewhat subjective, we 

claim that the visual quality of the output of our approach is slightly superior to that of 

the other approaches. Of course, there are problems generating from such a small sample 

and also due to the subjectivity itself. 

  An improvement of about 1dB, obtained by using the shift-invariant wavelet transform, 

has been reported in [2, 9]. The extension of our approaches to shift-invariant wavelet 

transform is on the list of our future work. 

  Just as with uHMT, the success of our approach can be attributed to the fact that our 

adaptive model can capture the statistical properties of real-life images. Secondary 

properties [9], non-Gaussianarity and persistency, are respectively reflected by GMM and 

the linear estimation of the variance field. Moreover, the tertiary properties [9], decay 

property across scale and strong persistence at finer scales, coincide with the fact that A  

and B  of coarse scales are larger than those of fine scales in table 1. 
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Table captions 

Table 1: Parameters for interscale child-on-parent/parent-on-child dependency. 

Table 2: Comparison of PSNR for different approaches with noise 05.0=nσ  

Table 3: Comparison of PSNR for different approaches with noise 1.0=nσ  

Table 4: Comparison of PSNR for different approaches with noise 2.0=nσ  

 

 

Figure captions 

Fig. 1 Four-level wavelet quad-tree decomposition of the image Lena. 

Fig. 2 Normalized histogram of the horizontal band in level 1. The solid line denotes the 

normalized histogram, the dotted one for the mixture model, and the dashed one for the 

Gaussian model. 

Fig. 3 The conditional density of the child in the vertical band of level 1, whose parent 

lies between 10 and 11. The solid line denotes the conditional density, the dotted one for 

the fixed mixture model, and the dashed one for the Gaussian model. 

Fig. 4 Variance field estimation in level 1. The solid line denotes the horizontal band of 

level 1, the dotted one for the vertical band and the dashed one for the diagonal band. 

Fig. 5 Image bridge with its noisy and denoised copies, noise 05.0=nσ . 

Fig. 6 Image bridge with its noisy and denoised copies, noise 1.0=nσ . 

Fig. 7 Image bridge with its noisy and denoised copies, noise 2.0=nσ . 
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Table 1: Parameters for interscale child-on-parent/parent-on-child dependency. 
 

LH HL HH Level A B A B A B 
1 3.5 0.26 3.7 0.26 2.3 0.15 
2 8.5 0.38 10 0.41 6.5 0.29 
3 24 0.35 30 0.35 13.5 0.6 
4 60 1.9 62 2.4 37 1.1 

 
 

In page 7 
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Table 2: Comparison of PSNR for different approaches with 05.0=nσ  
image proposed uHMT HMT 
baby 32.0 32.4 32.6 

birthday 30.3 28.9 29.1 
boats 31.0 30.4 30.6 
bridge 28.1 28.1 28.3 
buck 32.8 32.5 32.8 

building 29.7 29.7 30.0 
camera 30.2 30.3 30.5 
clown 30.7 30.6 30.9 
fruit 32.4 32.2 32.6 
kgirl 31.8 31.6 31.8 
Lena 30.4 30.4 30.5 

average 30.66 30.43 30.65 
 
 

In page 8
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Table 3: Comparison of PSNR for different approaches with 1.0=nσ  

Image proposed uHMT HMT 
baby 28.8 28.9 29.2 

birthday 27.4 25.8 25.8 
boats 27.3 26.4 26.5 
bridge 24.8 24.6 25.0 
buck 28.8 28.4 28.6 

building 26.3 25.9 26.3 
camera 26.5 26.2 26.4 
clown 27.0 26.8 26.8 
fruit 28.8 28.5 28.6 
kgirl 28.8 28.3 28.3 
Lena 26.9 26.7 26.7 

average 27.22 26.76 26.92 
 
 

In page 8
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Table 4: Comparison of PSNR for different approaches with 2.0=nσ  

image proposed uHMT HMT 
baby 25.9 25.8 25.4 

birthday 24.9 23.1 23.0 
boats 24.1 23.3 23.3 
bridge 22.0 22.0 22.2 
buck 25.2 24.7 24.5 

building 23.0 22.8 23.0 
camera 23.3 23.1 23.2 
clown 23.6 23.7 23.6 
fruit 25.5 25.3 25.0 
kgirl 25.4 25.4 25.3 
Lena 24.1 23.8 23.8 

average 24.11 23.76 23.73 
 
 

In page 8 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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