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Abstract

A method for deriving optic �ow� using robust statistics� is derived and applied to

standard test image sequences� We compare the performance of our approach against the

best results derived from competing methods� The method out�performs all published

methods in terms of accuracy� The method is also cheaper to implement than most of

the other methods� One of the key features in the success of this method� is that we use

Least Median of Squares� which is known to be robust to outliers� However� the Least

Median of Squares is known to be computationally expensive to compute� We manage

to keep the computational cost very low� whilst still retaining excellent performance� by

using an approximate solution to the Least Median of Squares only in a �rst stage that

detects outliers� The approximate solution is fast and adequately robust� as our extensive

experiments demonstrate� The essential features of our method should be applicable

in the solution of a wide range of other problems� essentially� wherever one solves an

over�determined set of linear equations�

� Introduction

This paper describes a robust method for computing optic �ow� Optic �ow is the apparent
motion of objects when projected onto the image plane� The crux of our method is to develop
a robust way to solve a set of over�determined linear equations�

Despite at least two decades of research� the best methods for the extraction of optical
�ow are relatively inaccurate and non�robust� By non�robust� we mean that the accuracy� in
particular parts of the image� is often considerably worse than the general accuracy attainable
over much of the rest of the image� The degradation in accuracy is due to a number of factors
such as larger noise in that region and�or failure of the underlying image motion model �see
section �����

In this paper� we use robust statistical methods� as well as some other innovations� in the
motion recovery formulation� We are able to achieve both an increase in accuracy� and a
degree of robustness that is matched� if at all� by few other methods�

The outline of the papers is as follows� In section � we give a brief introduction to motion
estimation methods� In this section we also survey some of the methods of others� which
also aim to improve the robustness of optic �ow calculation� The purpose is not to give a
comprehensive survey �that is beyond the scope of this paper� but to contrast our approach
with that of the major competing methods� The motivation for our method comes from
comparing the relative advantages and disadvantages of some standard formulations for solving
a set of over�determined linear equations� In particular� we derive the basis for our approach by
comparing standard least squares approaches with closest point and least median of squares
re�formulations of the problem � section 	� In section 
 we describe our new method� we
adapt some methods for fast �approximate� Least Median of Squares in Linear Regression
problems� so as to be able to perform outlier detection for �weighted� Least Squares problems�
We then� section �� present results of experiments that verify the eectiveness of our proposed
approach�

Since the key to our approach� is to solve an over�determined system of linear equations
in a robust manner� we expect the approach will be more widely applicable to other areas
�to other problems in computer vision and to other problems in unrelated areas that also

�
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reduce to the solution of an over�determined linear system�� Thus� the present paper should
be considered as the �rst demonstration of a basic robust scheme for solving linear equations�
where we have chosen to apply the method to optic �ow calculation� We do not claim that the
current implementation is the best one can do with our basic method� Some suggestions for
improving the implementation� for optic �ow calculations� as well as suggestion of other areas
of application of our techniques� are contained in our summary and conclusion �section ���

� Optic Flow and Robustness

It is possible to place almost all optic �ow techniques into one of the following three categories�

� Correlation based techniques

� Phase or energy based techniques

� Dierential techniques�

Correlation based techniques seek to explicitly match a small region of pixels in one image�
with a region in the next image� using a measure of match that is related to cross�correlation�
Such methods are similar to stereo or photogrammetric techniques� They are also popular in
video coding methods that employ motion compensation �most MPEG encoders employ this
type of technique��

Phase or energy based techniques seek to �lter the image sequence with specially tuned
�lters � the outputs of which are combined to give a phase or energy measure that indicates
the local speed and direction of motion� One of the most successful methods� but expensive
to compute� is that of Fleet and Jepson ����

Dierential techniques try to relate local changes in image intensity �expressed as spatial
and temporal derivatives of the image brightness function� to the optic �ow� Dierential
techniques usually perform faster and usually lead to a simple set of linear equations� We
base our approach in this class of approaches� For this reason� we explain� below� the basic
idea behind this class of methods�

��� Di�erential Based Optic Flow Methods

The dierential techniques invariably involve some form of what has become known as the
�Optic Flow Constraint� �OFC�� This constraint dates back to the late �����s ����	�� Although
the derivation of this constraint occurs in many sources� we give a derivation here that is
slightly more mathematically precise than most we have seen �see appendix A��

The OFC can be written as�

Ixux � Iyuy � It � � ���

which relates the spatial �Ix and Iy� and temporal �It� derivatives of the image brightness
function� at each point� to the optic �ow� �ux� uy�� at that point�

Since there is only one equation in two unknowns� we cannot solve for both the x and y

components of the optic �ow� without additional assumptions or information �the well known
aperture problem�� Put pictorially� �and in a way that we will make use of later�� a single
equation produced by the OFC only constrains the optic �ow �ux� uy� to lie on a constraint
line in �D ux � uy space� we need at least one other non�parallel constraint line to uniquely
determine the �ow�

In other words� using just the information we have so far� the problem is ill�posed� Various
alternative strategies to make the problem well�posed �regularise the problem� have been
suggested� These include� minimize a functional derived from the OFC and a smoothness
penalty term �e�g�� �	��� assume constant or a�ne variation in the optic �ow �e�g�� �
� ����� and
dierentiate the OFC to obtain more than one constraint �e�g�� ����� All of these approaches� in
some form or other� assume that the optic �ow of nearby pixels are closely related � some form
of motion consistency assumption� In the last example� dierentiating the OFC� the nature of
that motion consistency assumption is more subtle� Essentially� the �extra� equations are only
independent because the derivatives have to be estimated by a process that collects information
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over a region �not a mathematical point� � if there is not some local consistency in the motion
over this region� such a local gathering of information would not provide a valid constraint�

Regardless of the strategy for overcoming the aperture problem� one usually arrives at a
set of linear equations to solve for the optic �ow at each point�

Av � d ���

where v is a two component vector� v � �ux� uy�� �the optic �ow we wish to derive�� A is an
p � � matrix �whose coe�cients are somehow related to the image brightness� and d is a p

component vector �again� related to the image brightness�� The rank of A should be greater
than � �otherwise we still cannot solve for the two components of the �ow�� Note� although we
only need two independent equations� we have to recognise that the derivatives can only be
approximated� thus any two independent equations will not necessarily give the best estimate
of the true optic �ow� So we must� in general� use more equations than we have unknowns�
In other words� we inevitably arrive at a set of over�determined linear equations�

We discuss the alternative general strategies for solving such an over�determined system in
section 	��� From the perspective provided by this discussion� we explain our approach� and
the motivation for our approach in section 
�

��� Robust Optic Flow Methods

�Robustness� implies that the method is less sensitive to perturbations in input data� Roughly
speaking� a robust approach should not produce estimates that are clearly wildly wrong�
Nor should a robust approach� avoid making erroneous estimates simply through discarding
potentially useful information� just to avoid the possibility of the result being erroneous� that
is� a method that is overly conservative and produces no estimate almost anywhere in an
image� is not a robust method�

����� Rationale for Robust Methods

Although we concentrate on optic �ow methods based upon the dierential optic �ow con�
straints� much of what we say about the need for robust approaches still applies to the other
classes of methods� In particular� in some form or other� all methods require some form of the
following two basic assumptions�

� Intensity Coherence The image brightness of a point imaged in two successive images
is �strictest assumption� constant or �weaker assumption� nearly constant�

� Motion Coherence The motion of points nearby in an image is the same �strictest
assumption� or slowly varying �weaker assumption��

One common form of the last assumption is to allow the image velocity to locally vary in some
linear or a�ne fashion�

There are a number of reasons why particular methods of optic �ow produce erroneous or
inaccurate results� It is useful to categorise these sources according to�

� failure of the image�motion model

� failure of the brightness consistency �weak or strong forms�

� failure of the motion consistency �weak or strong forms�

� noise �e�g�� sensor noise� poor approximationof derivatives in a dierential based scheme��

We argue that this classi�cation is useful because failure of the imagemodel� as we de�ne it� has
some important practical distinguishing features� Firstly� it usually occurs in particular regions
that are associated with geometric or physical properties of the scene� For example� a moving
specular surface may destroy the accuracy of the brightness constraint� the boundary between
two regions moving with dierent motion will destroy the motion consistency assumption�
Secondly� this class of errors tends to lead to more severe errors� and� in some sense� errors
that are less random than the errors from the other sources that we have lumped together
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as �noise�� For this reason� we argue that the �rst class of errors can be detected by robust
statistical methods to detect outliers� The second class of errors� if also severe can be similarly
detected as outliers� On the other hand� if errors from this class are less severe� and cannot be
considered to be outliers� they can perhaps be reduced in eect by simple processes such as
least squares solution� In this way we can take maximum advantage of the particular features
of some standard robust and non�robust re�formulations of the optic �ow problem � see section
	���

Thus� the essential point is that� we see robust methods as ones that can avoid producing
wildly wrong estimates for the optic �ow� particularly where the source of the likely breakdown
in performance is a failure of the image motion consistency or image brightness consistency
assumptions� Such breakdowns commonly occur� with non�robust methods� around the edges
between dierently moving objects� An extreme case of the latter is the situation where we
have �motion transparency� �for example� a re�ection on a transparent surface moving dif�
ferently to the material beyond that surface� or� where there are two populations of movement
interspersed� such as a �ock of birds against a background of clouds� � an example of which
is shown in section ������

����� An Example of Motion Transparency and Outliers

To demonstrate the eects of noise and of breakdowns in the underlying motion model� we take
a real image sequence� the famous Hamburg Taxi scene �see �gure ��� A van in the lower left
corner is moving to the left at approximately 	 pixels per frame� We selected a small window�
centred on this van ��	 pixels square and centred at the point ������	���� For each pixel� we
calculated the spatial and temporal derivatives of the image brightness to yield a single OFC
for each pixel� We then plotted the OFC lines �see �gure ��� If� in this small rectangle� we had
a single underlying image motion� and the data were noiseless� we would expect all constraint
lines to pass through the point representing that motion� ��	��� in this example� However�
even though there is some tendency for many of the lines �shown solid� to cluster about this
point� there are many lines �shown dashed� that nearly intersect at the point ������ This is
mainly due to the branches of the tree that intersect the rectangle from which we have drawn
our pixels �the pixels in this rectangle� therefore� are a mixture of those belonging to the van�
and those belonging to the tree� the former have approximately uniform motion to the left
and the latter are stationary�� This is a phenomenum sometimes referred to as �transparent
motion� since it is similar to the situation where a re�ection� in a pane of glass� for example�
has dierent motion to other objects behind the re�ection� In addition to the breakdown in
the motion consistency or coherence assumption �i�e�� the motion model� we have other noise
eects� due to a variety of other sources� that cause a spread in the intersections of these two
populations�

The point we wish to make� with this example� is that a non�robust method that tries
to treat all of the constraint lines as being valid data �for a single underlying motion�� will
produce very poor estimates of the velocity� We wish to have a robust method that will reject
the in�uence of any data that either belongs to another population �two or more independently
moving object in a window�� or is so badly corrupted by noise as to be unreliable� After brie�y
surveying other attempts to achieve this end �next section�� we devise such a robust method
�section 
��

����� Previous Robust Approaches

The explicit usage of robust statistics for recovering the visual motion dates back to early
this decade� Darrel and Pentland ��� considered using M�Estimators for 	�D translations with
constant depth� For ���D� optic �ow� Black and Anandan ��� and Odobez and Bouthemy ���
developed methods using M�Estimators for a correlation and dierential formulation of the
optic �ow problem� The main dierence between these two approaches is the use of dierent
minimisation techniques� However� M�estimators have very low �break down points� ���� �
the percentage of contaminated data that can cause the estimator to give an estimate far from
the true estimate� In fact� the breakdown point of the proposed M�estimators is at most �

�p���

where p is the number of estimated parameters ����� This shows that for an a�ne model
used in ���� with � parameters� the breakdown point is only �
�� A second limitation of this
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Figure �� Hamburg Taxi Sequence
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Figure �� Hamburg Taxi Sequence � Optical Flow Constraints
Optical Flow Constraint Lines for the Hamburg Taxi sequence� There are ��� lines� one for
each pixel in the rectangle in �gure �� The lower axis represents the horizontal velocity� ux�
and the left�hand axis represents the vertical velocity uy�
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approach is that there are a number of parameters to �tune� with no clear rule as to how to
do so�

A similar approach for estimating the �ow �eld� using the Horn and Schunk �	� type
regularisation technique has also been proposed by Iu ����� In this method� the motion is
estimated by minimising the energy function of a globally smooth motion model� A rank
ordering technique is used to reject the local outliers of the globally smooth model and the
resulting minimisationproblem is solved using a stochastical optimisation technique �simulated
annealing�� Aside from computational burden of such minimisation technique� the proposed
kind of outlier rejection is likely to become very unstable for centrally located data� Since there
is no measure on quantitative performance is presented� it is di�cult to assess the performance
of this method�

In order to cope speci�cally with motion boundaries� Fennema and Thompson ��� pro�
posed a clustering method using the Hough transform� This method is computationally very
expensive� Schunck ��	� modi�ed this method� to reduce the computational cost� by clustering
constraint lines along the OFC produced by the central pixel in a patch� However� such a
method is patently non�robust to perturbations in the data that determined the central con�
straint line� To overcome that problem� Nesi et al� ��
� proposed a method based on the
Combinatorial Hough Transform� This approach� however� still remains expensive� Moreover�
all of the methods just discussed� solve the problem as a version of the Closest Point Problem
�see section 	����� where we argue that this unnecessarily discards some useful information
and� even worse� such a formulation can be highly in�uenced by less accurate information��

Another approach to optic �ow computation using robust statistics is the use of Robust
Hough Transform �������� In this approach� an a�ne model of motion is introduced and the
�ow is calculated by Hough Transform� This Hough transform is based on the parameter
space of the a�ne motion model� and �voting� uses the error between the brightness values
of corresponding �using the a�ne mapping� pixels in sequential frames� weighted by a kernel
function belonging to the M�Estimators family� The Median of Absolute Deviation is used
to scale the residual before applying the kernel function� Since a good match should lead
to a low error function �and thus a low vote in Hough transform space�� the problem then
reduces to an optimization problem� �nding the minimum in Hough space� The resulting
optimisation problem is then solved using the �steepest descent� method� This algorithm has
serious limitations due to the robustness limitation of M�Estimators �see previous discussion of
Black�s method�� Moreover� for the optimisation scheme to work� the support function has to be
a well�behaved function� As explained by the authors� the function is only well�behaved in the
region with valid Taylor expansion� So� in the regions with motion boundaries� transparency
etc� the optimisation scheme is likely to fail� The very poor results presented for the Yosemite
Image sequence ���� con�rms our intuition about the limitation of their algorithm�

Several works use Total Least Squares �TLS� ���� ���� ����� Even though such methods
can improve the results �basically by considering noise in both the coe�cients and the right
hand side of equations such as �� these methods are not robust methods as the break down
point occurs even at one bad data sample�

Although Meer et al� ���� uses LMedS in other problems drawn from the computer vision
�eld� it seems that no previous work has used Least Median of Squares �LMedS� to solve the
optic �ow problem� Mitiche ���� has mentioned the possibility of using LMedS� but appears
not to have explored this suggestion with an algorithm or experimental results� We base our
new method� in part� on the LMedS technique� However� as we describe later� the LMedS is
not a practical technique by itself� thus our full technique is vastly dierent to even anything
that could result directly from the suggestion of Mitiche�

We have not given a precise de�nition of �a robust approach�� so it is not possible to give
a complete categorisation of previous approaches into robust or non�robust� It is certainly
true that most recent methods employ some form of post�processing �to identify and reject
erroneous results�� Although this produces a form of robustness� this is a form that� even if it
works well� is too conservative � it often produces no estimate even where the situation ought
to be salvageable �in short� the perturbed data has already �done the damage� and should
have been removed earlier��
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� Methods for Solving Linear Equations in Presence of

Noise

Before describing our approach in detail� we need to introduce various abstract problem
formulations� Least Squares Problem� Standard �linear� Regression Problem� Least Median
of Squares� and Closest Point Problem� We remind the reader of the context �refer to section
����� our brightness consistency and motion consistency assumptions generate� for each local
area� a system of simultaneous equations �equation ��� There are a number ways of viewing
and re�formulating the problem� many of them suggested by considering that each equation
can be viewed as a constraint line in ux � uy space� It is in this context� that our optic �ow
problem can be related the aforementioned abstract problems � which we now discuss� in turn�

��� Standard Reformulations of the Solution of Linear Equations

����� Least Squares Problem

This is the most well known formulation applicable to solving an over�determined set of
equations�

Suppose we have p equations in � unknowns �x and y��

ai�x� ai�y � di� d � � � � � p �	�

We seek the �x� y� that minimises�

ELS �

pX
i��

�ai�x� ai�y � di�
� �
�

This formulation has a well known explicit solution �simply obtained by dierentiating ELS�
with respect to the unknowns� and equating these derivatives to zero��

v � �ATA���ATd ���

where v � �x� y�� A is the matrix with ijth entry aij and d is a �column� vector with row di�
Thus the formulation leads to easy and quick solution methods�

Another attractive feature of the least squares problem is that the LS produces an estimate
that has the smallest variance amongst the solutions that are linear in the data d when there
are no systematic errors ����� The emphasis on the last qualifying phrase is placed there as
this is the key weakness of the LS approach in optic �ow calculations� particularly in regions�
such as occluding boundaries� where the underlying model is no longer valid� This observation
is one of the foundations of our proposed robust method�

����� The Closest Point and Standard Regression Problems

Many formulations of optic �ow use a closest point problem �see section ����	�� Given a set
of p lines� y � mix � ni� i � � � � � p� the problem is to �nd the point that has the minimum
sum of squared vertical distances to the lines� That is� to �nd the �x� y� that minimizes�

ECP �

pX
i��

�mix� ni � y�� ���

On the face of it� this problem looks very much like the Least Squares Problem� However�
there is one very important distinction� in the Least Squares Problem� even though every
equation represents a line� we have not chosen to weight each line equally� Put more precisely�
we can map one problem on to the other by the following process� multiply each term in
equation 
 by ��

ai�
and identify �ai�

ai�
with mi� and

di
ai�

with ni� However� the scaling� which we
have introduced to show the equivalence� will weight each term in the sum dierently� some
�errors� will now be more highly penalized by others in the reformulation� This distinction
is important since our equations often carry a natural scale� For example� the OFC� equation
�� produces coe�cients that are scaled by the gradient of the image brightness� This has the
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natural and useful consequence that those constraints resulting from parts of the image with
high contrast will carry more weight� in a least squares formulation �an observation commonly
made in the literature � see� for example� ������ To arbitrarily rescale such natural weights� as
one would have to do to reformulate the problem as an instance of the closest point problem�
is likely to be a retrograde step � an objection to this type of approach that seems to have
escaped many �e�g� ��
�� who have used a closet point formulation in their schemes�

There is a one�to�one relationship between the closest point problem formulation and with
that of the standard regression problem �and hence with least squares formulation�� In the
standard �linear� regression problem� we have a number of data points� to which we wish to
�t a line� That is� given a set of p points� f�xi� yi� � i � � � � � pg� we wish to �nd the line�
parameterised by �m�n�� i�e�� y � mx � n� such that the sum of squared residuals �squared
vertical distances to the line from the points� is minimised� In other words� we seek �m�n�
that minimise�

ESR �

pX
i��

�mxi � n� yi�
� ���

Given a CP formulation� we can de�ne a mapping T that takes each line �mi� ni� of a CP
formulation and uses these parameters to replace �xi� yi� of a SR formulation� Comparison of
formula � and formula � shows that the solutions will be related by� the original CP solution
�x� y� is given by �m��n�� where �m�n� is the solution of the new SR formulation� Obviously�
a similar relationship applies in reverse�

One of the problems with the standard regression formulation� with the least squared for�
mulation� and and with the closest point formulation� is that one bad data point can drastically
in�uence the solution� These methods have a break down point of one and are not robust�

����� Least Median of Squares �LMedS�

The LMedS problem� as proposed in ��	� ���� is a reformulation of the standard regression
problem� Instead of �nding the line that has the smallest squared vertical distances from
the data points� the LMedS approach identi�es the narrowest strip �bounded by two parallel
lines� that contains one more than half of the data points� the LMedS line then runs down the
middle of this strip ��
�� The break down point of the LMedS is ��� � it can tolerate up to
half of the data points being arbitrarily bad� As long as the majority �p���� in our examples�
are �sensible�� in some sense� the solution will be �sensible��

As we described before� our preferred formulation for the optic �ow problem is a Least
Squares formulation� The LMedS method presented in ��	� is a robust solution to the Standard
Regression problem� therefore� we have reformulated the LMedS to apply to the Least Squares
problem �see section 	���� In the sequel� when we refer to the LMedS approach� we refer to
the approach as modi�ed for our purposes�

We now illustrate how the LMedS solution can provide a more robust solution� than LS�We
generated �� linear equations� chosen so that 
	 of the associated lines pass through the point
�	� �� and the remainder of lines pass through �������� This can represent a situation where
we have two dierently moving objects in one patch of pixels� the objects are positioned so that
we obtain approximately equal mixture of data consistent with one motion �ux� uy� � �	� ��
�this is �	��� of the lines� and the rest consistent with a motion of �������� We then imposed
��� random noise to the coe�cients of the lines associated with the �narrow� majority� The
coe�cients of the rest of the lines are untouched� One can see the lines plotted in �gure
	� This represents an extreme case� Not only are nearly ��� of the data consistent with
some other estimate� but this slight minority data is all �clean� � they are all perfectly in
agreement with the solution �������� The slight majority population has been polluted with
noise so that there is no perfect agreement� of this slight majority� with the motion �	� ���
However� despite the apparent di�culty of �nding the �true� majority solution� the LMedS
does� indeed� predict virtually the correct result �the solution by this method is ������� 	������
whilst a Least Squares solution is� as expected� very inaccurate�� Indeed� the Least Squares
solution of ������� ������ is� as expected� consistent with neither population of data but is
consistent� wrongly� with some sort of compromise�
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Figure 	� LMedS Example
In this �gure� there are �� lines� Of these� a slender majority �
	� are formed from lines that
were coincident on ��� 	�� however� they have been displaced by ��� noise having been added
to their coe�cients� and the rest are coincident on �������� The LMedS solution �solid arrow�
is still in agreement with the intersection point of the majority �before noise�� whilst the LS
solution �outlined arrow� is some type of erroneous compromise between the two populations�
This shows the extreme robustness of the LMedS formulation�

����� Summary and Comparison of the Formulations

The CP and SR problems are essentially dual formulations of the same problem� The LS
formulation is related to the CP and SR formulations but not an identical reformulation� The
LS� CP� SR� are all fast to compute� however� they are all non�robust� The LMedS is very
robust� but is expensive to compute� Indeed� no closed form solution of the LMedS formulation
is known� The fastest known method for computing the exact LMedS solution has O�p�� time
and O�p� space complexity �����

��� LMedS for Outlier Detection � WLS

The previous discussion has shown that� if we try to formulate the solution of the over�
determined set of linear equations �our optic �ow constraints� into any of the LS� CP� or
SR formulations� we may gain such things as fast solution algorithms or an improvement in
the ease of analysis of the formulation� but they are all basically non�robust� The LMedS is
robust but computationally and analytically unattractive� The key to salvaging the situation�
in view of this dilemma� has two parts� explained in this section� Firstly� there are fast meth�
ods to approximately solve the LMedS solution� The approximation is usually good enough
to employ the LMedS solution� not as a �nal solution to our optic �ow problem� but as a
temporary solution from which we can detect outliers� Secondly� having detected outliers� we
can now safely use a fast� but non�robust method� such as LS� on the data after the outliers
have been removed�

Using this observation� we will �next section� devise a complete method for optic �ow
calculation that has� as a basis� what we call Weighted Least Squares� The essential idea is
that� after solving� approximately� the LMedS formulation� we then have an estimate of the
dominant optic �ow �in that region�� from which we can classify the constraint lines as being
�good� or �bad� in terms of how consistent they are with this estimate� We can then �weight�
the constraint equations �associated with each line� to re�ect this con�dence measure� In the
extreme case �one that we use in this paper� the weights are either � �reject� or � �accept�� We
can then solve the weighted equations by a non�robust method� such as least squares� since
we have� hopefully� removed all signi�cant outliers�

The complete scheme is a little more complex than this� However� at this this point� before
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Figure 
� Weighted Least Squares
In this diagram there are two populations of lines � the majority �solid� are consistent with one
common point� while the minority are consistent with another� The Weighted Least Squares
solution �black arrow� is unperturbed by the presence of the minority population �outliers�
whilst the Least Squares solution �white arrow� is consistent with neither population�

explaining the complete scheme in detail� we take the opportunity to illustrate the eectiveness
of the key idea we have just introduced�

First� consider a synthetic example� We de�ne the parameters of �� lines so that the
majority �all except ��� pass through the point �	��� while the minority pas through the
origin� These lines are drawn in �gure 
� The black arrow depicts the �robust� weighted least
squares solution �	������������ which is much closer to the true intersection of the majority
than the least squares solution of �	��	�����	���

For our second example� we return to our Hamburg Taxi example� �gures � and �� The
least squares �LS� and weighted least squares �WLS� solutions are depicted in �gure �� The
WLS solution of ������	� ������ is clearly closer to the true motion �not precisely known but
is approximately �	� ��� than the LS solution of �������� �������

� Proposed Method

We now have all the ingredients �and background rationale� for constructing our method�
Given a set of linear optic �ow constraint equations �equation ��� we would� ideally have
a single unique solution� Pictorially� in ux � uy space� each equation is a line and� in the
ideal case� all lines would go through a single point � our required solution� However� in
reality� we are faced not only with a situation in which most lines do not go through the real
solution point� but that there are severe outlier lines� We are then faced with the question
as to how to characterise the solution� Many alternatives suggest themselves� is it the point
with the smallest sum of squared distances �taken vertically to the lines�� However� this is
non�robust to our outliers� Moreover� as we argued earlier� the implicit normalisation of the
CP formulation destroys the natural con�dence weighting� available in the LS formulation�
that comes with the magnitude of the coe�cients of the linear constraints�

We would like to use the LS method for solving our optic �ow equations �equation ��
because it is fast� the solution is explicitly known �equation ��� and the method is reasonably
tolerant of non�systematic noise� We consider using LMedS� as an alternative� since it is
robust� but we �nd that it is too expensive to use this method� Thus we return to consideration
of LS� Those systematic errors� and�or other noise that is large enough to be troublesome�
must be removed as the LS is not robust against these� At this point� we are saved because�
although the LMedS is expensive� there are fast approximations will yield a solution good
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Figure �� Weighted Least Squares � Hamburg Taxi
The black arrow shows the WLS solution and the white arrow shows the LS solution� The
WLS solution is clearly closer to the �approximately� known true motion of the taxi ��	����

enough �close enough to the true solution� to classify and remove outliers� Thus we use the
approximate solution to detect outliers� then� with the outliers removed we solve the remaining
system with a least squares which is fast and gives a good estimate if the noise is non�biased�

To this basic strategy we need to add one further ingredient� The whole basis of the Least
Median of Squares method is that there must be a population that is in the majority� This can�
of course� break down �if we have� say� three populations roughly equal in size�� Moreover�
since we are using an approximate LMedS solution� and because there may be other disturbing
factors �perhaps there simply is not enough texture� in the region to give any reasonable
constraints�� we need to be able to validate our �nal answer �and reject estimates that are�
despite our best eorts according to the previously outlined strategy� clearly erroneous�� We
shall propose a measure of reliability �appendix C� for this purpose� Thus our scheme requires
just two thresholds� a threshold for outlier detection �appendix B� before applying WLS� and
a threshold for reliability to discard any �nal answers� after WLS� that are still unlikely to be
accurate� Since the precise method for choosing these thresholds is not essential to the scheme
we are proposing� we give the details in the appendices� Su�ce to say� one threshold is always
set �appendix B� to a �xed value� determined experimentally� and the other is set by a user
de�ned value�

For purposes of clarity� we list the steps of our algorithm here�

�� Estimate the spatio�temporal derivatives of the image brightness function� The precise
form of estimate� whilst important for accuracy� is not essential to our proposal� We
choose to use� for our experiments� convolutions with derivatives of Gaussian functions
�as is customary in many approaches� see for example ������

�� Select a patch of the image� over which we are going to assume some motion consistency�
The precise form of the motion consistency is not essential� we are simply assuming a
single or dominant population �we only recover the dominant population if there is more
than one � we can� of course� elaborate our method to remove the dominant population
and re�solve for any secondary populations� but we leave this to future work�� In our
experiments we choose to assume the motion is �spatially� constant in a patch� Future
work could include an a�ne �spatial� variation in motion within a patch�

As a result of this stage� each patch yields a system of equations expressing the motion
constraints �equation ��� where� in our experiments� each constraint is of the form of
equation ��

	� Use a fast and approximate LMedS solution to obtain a temporary estimate of the
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motion� Again� the precise method to approximate the LMedS solution can vary� We
use here an algorithm adapted from Rousseeuw and Leroy ����� Whereas that method
was de�ned for a Linear Regression problem� we adapt it to a Least Squares problem�

One simply randomly chooses some fraction of the constraint lines� pairwise� and for
each pair� we calculate the intersection� For this intersection one can calculate the
residuals for all other lines� and� in turn� calculate the median of these residuals� The
pair of lines with the smallest residual is chosen as the pair that de�nes the approximate
Least Median of Squares solution� In a naive approach to approximating the LMedS
solution� one would try to use every possible pair of lines �a combinatorially explosive
situation� and evaluate the median of the residuals produced by the intersection of each
pair� However� one can use a very small fraction of the possible pair combinations and
the probability is high that the subsample will produce an intersection that belongs to
the majority population ���� �for approximate LMedS in outlier detection� we need only
one such good intersection�� Indeed� if one chooses m pairs of lines� from the p we have
in each patch �p is considerably larger than the number of parameters to be estimated��
then the probability of this sample giving a good estimate for the LMedS solution is�

�� ��� ��� ����m ���

where � is the fraction of samples that do not belong to the majority population� From
this formula� one can see that one can choose a very small population m� and still such
that the probability is close to �� We often use m as small as ���	��


� Reject outliers using a method of outlier rejection� based upon the temporary estimate
of motion�

�� Solve the Weighted Least Squares problem resulting from the previous step� In our
experiments� since we use weights � �reject� or � �accept�� this is simply a matter of
removing the rejected equations from equation � and solving by least squares� the smaller
system� according to equation ��

�� Examine the result� using a measure of reliability and do not produce any estimate if
the result is judged to be still unreliable�

In our experiments� we repeat the above process for a patch centred upon every pixel� to yield
the estimated of the �ow at that pixel�

� Experimental Validation

Before we detail the experimental results� we brie�y discuss the computational cost� Properly
comparing the computational cost of algorithms is� of course� a di�cult procedure� Various
optimizations can usually dramatically change the time it takes an algorithm to run� as can
hardware implementation� Moreover� the speed can be aected by various parameter settings�
in our approach� two signi�cant settings are the size of the patch� and the number of pairs of
lines we use to approximate the LMedS result in that patch� For these reasons� since our code
�and usually the code of other researchers� is written more for correctness than speed� we give
only rough� indicative times� Running on an SGI Indy �SC 
��� at �	�MHz� our code takes
approximately ��� minutes to calculate the �ow for an image of size ��� by 	��� using patches
of size � by � around each pixel� and using 	� pairs of lines in each patch to approximate the
LMedS� We can get good results faster� by using only �� pairs of lines per patch� for example�
and the running time is roughly halved� By comparison� a � level implementation of Black
and Anandan�s scheme ��� takes about 
 minutes� and Fleet and Jepson�s scheme ��� takes
about one hour or so� In other words� our scheme is much cheaper than Fleet and Jepson�s
and probably as cheap as Black and Anandan�s �roughly�� We see no impediment to making
the scheme real time using hardware implementation at relatively modest cost� but� of course�
proof of this is beyond the scope of this paper�

The quantitative performance of the proposed algorithm has been measured by applying
the algorithm to image sequences for which the true �ow �elds are known� We provide quant�
itative performance �gures for both synthetic and real image sequences� The synthetic image
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sequences contain a controlled number of the features� exhibited in real image sequences� that
violate the basic model assumptions �motion consistency and image brightness consistency��
thus they provide very optimistic �upper� bounds on the performance one can expect� However�
synthetic image sequences do have two experimental advantages which make them useful� one
can easily calculate the true motion �eld �indeed there are relatively few real sequences with
known motion �elds in general use in the vision community�� and one can control the ways
in which the basic model assumptions are violated� In our examples� the synthetic sequences
basically violate just one model assumption� there is a motion discontinuity �and a simple and
precisely known one at that� that allows us to investigate the performance of the algorithm in
quantitatively identifying the failure of the simple motion model �and correctly reporting one
of the two motions in a patch near the boundary��

All of the derivatives of the image brightness function are calculated by constructing the
appropriate derivative of a 	D Gaussian function �with equal spatial and temporal standard
deviation�� Each sequence is then convolved with these derivative of Gaussian functions� We
report the results for dierent sized spatial rectangular windows �within which the motion is
assumed to be approximately uniform��

The error analysis is performed using Barron�s ���� software� Therefore� the errors are
reported in �degrees�� This measure is the angle between the true and estimated motions
when each is expressed in homogeneous coordinates� We refer to the cited paper for full
details� As stated by Otte and Nagel ����� the values of the errors reported by this measure
should be treated with some suspicion as estimates that have the same magnitude of error may
provide vastly dierent angular errors� However� there is not a satisfactory summary statistic
in use in the literature� and� since Barron�s measure is becoming widely used� we believe that�
providing the above warning is noted� it is one of the best available measures one can provide�

The error statistics are generally only of interest in some comparative sense � compared to
other competing methods� Since Fleet and Jepson�s method ��� is reasonably acknowledged
as one of the more accurate methods �and one of the more expensive�� ����� an observation
we have generally con�rmed in our own experiments� we provide the results of applying this
method to the same image sequences� The results for this method are generated by the software
used in ���� �either by taking the results directly from those quoted in that paper� or� where
such results were not provided� running the very same software ourselves�� We have also�
where available� quoted other results� from the literature� produced by other methods such as
those of Szeliski and Coughlan �
��

��� New�Sinusoid� Image Sequence

We created a sinusoidal image sequence similar to Sinusoid� of ����� The sequence contains
images having the same spatial frequencies as Sinusoid�� However� in contrast to that se�
quence� which had spatially constant motion across the whole image� our sequence has motion
boundaries� This was achieved by creating a stationary square �length of side �� pixels� in the
middle of each image� Figure � shows a sample image from the sequence and table � presents
the error statistics for the method of Fleet and Jepson and that of our own� From this table�
it is seen that our method clearly out�performs the Fleet and Jepson method in both accuracy
and density of the points for which estimates are provided�

From �gures �� � and �� we can clearly see that our validation procedure correctly removes
the unreliable motion estimates �and� in this simple case� the unreliable motion estimates are
those around the boundary of the central rectangle� where the image motion model breaks
down�� The size of the improvement can be judged by comparing successive rows in table �
�WLS without check or validation compared with WLS using same size patch� etc�� but with
validation using R� � �������� The validation procedure reduces the average error greatly but
still retains a very high density of reported motion estimates�

��� Yosemite Image Sequence

The Yosemite sequence is one of the most complicated synthetic sequences that is widely
used in the research community� The sequence was generated from digital terrain data of the
Yosemite valley and the sequence depicts a simulated ��y�through�� The motion is mainly
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Figure �� New�Sinusiod� Sequence
One frame taken from the New�Sinusiod� sequence� The texture is created by sinusoidal
spatial variations�

Figure �� New�Sinusiod� Sequence � Correct Flow
The correct motion for the New�Sinusoid� sequence� Small � symbols denote zero velocities
at those positions�

Frame Technique Avg� Error Std� Dev� Error Density

� Fleet and Jepson �� � ���� � � ����� ��	�� �
���� �	��
Fleet and Jepson �� � ���� � � ���� ����� 	���� ���

WLS �� � ��
� ���� m � 	
� without check� ����� �
���� �


WLS �� � ��
� ���� m � 	
� R� � 
������ 
�
�� 
�
�� �	��

�
 WLS �� � ��
� ���� m � 	
� without check� ���
� ����� �


WLS �� � ��
� ���� m � 	
� R� � 
������ 
�
�� 
�
�� ����

�� WLS �� � ��
� ���� m � 	
� without check� ����� ����� �


WLS �� � ��
� ���� m � 	
� R� � 
������ 
�
�� 
�
�� ����

Table �� Error analysis using New�Sinusoid� image sequence
The second column of entries determines the method applied to generate the row of error
statistics� In our method �WLS�� the numbers in brackets depict the size of the Gaussian
smoothing �� is the standard deviation of the �lter�� the size of local patch used �p�� the
number of pairs of lines used to approximate the LMedS �m�� and the reliability threshold
�R��� in that order�
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Figure �� New�Sinusiod� Sequence � Flow Calculated with WLS without validation
Without the validation procedure� to detect motion estimates that do not �t our image model
well� we still have some erroneous estimates along the boundaries of the stationary rectangle�

Figure �� New�Sinusiod� Sequence � Flow calculated by WLS with validation
Representative example of the result of applying the validation procedure �R� � ������� to
remove unreliable motion estimates� The positions marked with a � are those where the
estimates were judged to be too unreliable�
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Figure ��� Yosemite Sequence � with cloud

Figure ��� Yosemite Sequence Correct Flow � with cloud

divergent� while the clouds drift towards the right with a speed of � pixel�frame� The sequence
is poorly sampled in time and the larger motions are� therefore� subject to bad temporal
aliasing� The results of using this sequence in our experiments are shown in table � �using
a sequence with the cloud � see �gure ��� and in table 	 �using a sequence where no cloud
has been added to the image � see �gure �
�� We also depict the true �ows ��gures �� and
���� �ows recovered by our method without validation ��gures �� and ��� and with validation
��gures �	 and ����

The �rst thing to note is that all methods generally perform better on the sequence without
the cloud � it seems that the cloud has poor texture and so motion estimates in this region
are generally unreliable� Considering the results for the cloudy sequence alone� we see that
the results from our method �WLS� are clearly superior to the methods of Fleet and Jepson�s
and of Szeliski and Coughlan� Turning to the sequence without cloud� our method performs
better than both that of Fleet and Jepson and of Black and Anandan�

One can also see� from these results� that the choice of the number of pairs of lines �m�
used to approximated the LMedS� to remove outliers� does not have a great aect on the
accuracy� providing the number m is greater than �� or so�

Finally� we add a note of caution� a completely �fair� comparison is di�cult to perform�
as many authors clip part of the image region �usually the edges but also some of the sky
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Figure ��� Yosemite Sequence WLS Flow �no validation� � with cloud
Visually� the �ow �eld contains many errors in the cloud region�

Figure �	� Yosemite Sequence WLS Flow R� � ��� � with cloud
The validation procedure has correctly identi�ed many of the motion vectors in the cloud
region as being unreliable� There are� however� still a number of undetected �relatively� poor
estimates in this region �contributing to a slightly higher average error when compared with
the same algorithm applied to the cloud free image sequence��

Figure �
� Yosemite Sequence � without cloud
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Frame Technique Avg� Error Std� Dev� Error Density

Middle Fleet and Jepson �� � ��� � � ����� ����� ���	�� 	
��
Fleet and Jepson �� � ��� � � ���� ���	� �	���� 	���
Szeliski and Coughlan �s � �� Te � 	


� ����� ����� �	��
Szeliski and Coughlan �s � �� Te � �


� 	�
�� ����� 	���
WLS �� � ��
� ������ m � 	
� without check� ��	�� �	���� �


WLS �� � ��
� ������ m � 	
� R� � 
���� ���	� 	���� ����
WLS �� � ���� ������ m � 	
� without check� ����� ����� �


WLS �� � ���� ������ m � 	
� R� � 
���� ��
�� ����� ���

WLS �� � ���� ������ m � 	
� R� � 
���� 	���� ����� ����
WLS �� � ��
� ������ m � 	
� without check� ����� ����� �


WLS �� � ��
� ������ m � 	
� R� � 
���� ���	� ���
� ���	
WLS �� � ��
� ������ m � 	
� R� � 
���� ����� ��
	� ����
WLS �� � ��
� ������ m � 	
� R� � 
��
� ����� ��	�� ����
WLS �� � ��
� ������ m � 	
� R� � 
���� 	�		� ��	�� �
��
WLS �� � ��
� ������ m � 	
� without check� ���	� ����� �


WLS �� � ��
� ������ m � 	
� R� � 
���� ����� ����� ����

Table �� Error analysis using Yosemite image sequence �with cloud�
The second column of entries determines the method applied to generate the row of error
statistics� In our method �WLS�� the numbers in brackets depict the size of the Gaussian
smoothing �� is the standard deviation of the �lter�� the size of local patch used �p�� the
number of pairs of lines used to approximate the LMedS �m�� and the reliability threshold
�R��� in that order�

Figure ��� Yosemite Sequence Correct Flow � without cloud
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Figure ��� Yosemite Sequence WLS Flow �no validation� � without cloud
Visually� the �ow �eld contains few detectable errors�

Figure ��� Yosemite Sequence WLS Flow R� � ��� � without cloud
The validation procedure has determined that a small patch �marked with �� of velocities are
unreliable�
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Frame Technique Avg� Error Std� Dev� Error Density

� Fleet and Jepson �� � ��� � � ����� ��
� ����� 	
�

Fleet and Jepson �� � ��� � � ���� 	���� ����� 		���
Black and Anadan ����� ����� �


WLS �� � ��
� ���� m � 	
� without check� 	��
� ��

� �


WLS �� � ��
� ���� m � 	
� R� � 
��� 	��	� ����� ����
WLS �� � ��
� ���� m � �
� without check� 	���� ����� �


WLS �� � ��
� ���� m � �
� R� � 
��� 	���� ����� ���	
WLS �� � ���� ���� m � �
� without check� 	���� ����� �


WLS �� � ���� ���� m � �
� R� � 
��� 	���� ����� ���	
WLS �� � ��
� ������ m � 	
� without check� 	���� ����� �


WLS �� � ��
� ������ m � 	
� R� � 
��� 	���� ����� ����
WLS �� � ��
� ������ m � �
� without check� 	���� ���
� �


WLS �� � ��
� ������ m � �
� R� � 
���� 	���� ����� ���	
WLS �� � ��
� ������ m � �
� R� � 
��� 	���� ����� ����
WLS �� � ��
� ������ m � �
� R� � 
��� 	���� ����� ����

Table 	� Error analysis using Yosemite image sequence �without cloud�
The second column of entries determines the method applied to generate the row of error
statistics� In our method �WLS�� the numbers in brackets depict the size of the Gaussian
smoothing �� is the standard deviation of the �lter�� the size of local patch used �p�� the
number of pairs of lines used to approximate the LMedS �m�� and the reliability threshold
�R��� in that order�

region in the Yosemite sequence�� out before collecting error statistics� Often� they either do
not mention this� or are too vague in their description for one to accurately repeat their results
�or ensure comparable procedures are carried out for experiments on other methods��

��� Otte Image Sequence

This sequence is a real image sequence� recorded using a camera which translates toward a
scene� The objects in that scene are stationary� except for a Marble block which is translating
towards the left� A snapshot taken from this sequence is shown in �gure �� � for more details
of the sequence see ����� The scene contains many sharp discontinuities in both depth and
motion�

The results of our experiments� are shown in table 
� We can clearly see� from these results
that our method �WLS�� particularly with large patch sizes� performs better than Fleet and
Jepson�s approach�

��� Translating and Diverging Tree

The diverging and translating tree sequences are two sequences created by a camera moving
towards and parallel to �respectively� a poster picture of a tree� Thus� all of the image is
essentially at the same depth �although there seems to be some slant� and the �ow is rather
simple �being essentially divergent in one and essentially parallel �ow in the second�� A
snapshot indicative of the images in either sequence can be seen in �gure ���

The results produced by our experiments can be found in� table � �Diverging Tree Se�
quence� and table � �Translating Tree Sequence��

The results of experiments with the �Diverging Tree� sequence show that our method
�WLS� produces results not markedly better than those of Fleet and Jepson�s method� We
believe that this is due to the fact that our �ow model is simple �and we expect to be able
to obtain the extra but small improvement necessary to match their result by incorporating
an a�ne model into our approach�� Certainly� since there are no discontinuities in motion�

�Indeed� if we clip �
 rows from the top �removing the sky region� and � pixels from the other boundaries
�due to the Gaussian mask used to calculate the derivatives�� similar to what we believe Black and Anandan
did� we obtain an average error of ���	� with standard deviation of ����� for all the remaining pixels in the
cloudless Yosemite sequence �using � � �� ��� ��� m � 	
�withoutcheck��
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Figure ��� Otte Sequence
Snapshot taken from the Otte sequence�

Figure ��� Otte Sequence � Correct Flow
Note that� unlike most test sequences with known velocity� there are actually patches of
unknown velocity in this sequence �marked with � symbols��

Figure ��� Otte Sequence � WLS Flow �no validation�
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Figure ��� Otte Sequence � WLS R� � ���� Flow

Frame Technique Avg� Error Std� Dev� Error Density

	� Fleet and Jepson �� � ��
 � � ����� ��
�� 	���� �
��
Fleet and Jepson �� � ��
 � � ���� ����� ��
�� ����
Fleet and Jepson �� � ��� � � ����� ��
�� 	���� ����
Fleet and Jepson �� � ��� � � ���� ���	� ����� ����
WLS �� � ��
� ���� m � �
� without check� ���
� �
���� �


WLS �� � ��
� ����m � �
� R� � 
���� 	��	� 	���� �
��
WLS �� � ��
� ������ m � �
� without check� ���	� ����� �


WLS �� � ��
� ������m � �
� R� � 
���� ���
� ����� ����
WLS �� � ��
� ���� m � �
� without check� ����� ���	� �


WLS �� � ��
� ����m � �
� R� � 
���� 	���� ����� ����
WLS �� � ��
� ������ m � �
� without check� 	�	�� ���� �


WLS �� � ��
� ������m � �
� R� � 
���� ����� ����� ����
WLS �� � ��
� ���� m � 	
� without check� ���	� ������ �


WLS �� � ��
� ����m � 	
� R� � 
���� 	�		� ����� ����
WLS �� � ��
� ������ m � 	
� without check� 	�	�� ����� �


WLS �� � ��
� ������m � 	
� R� � 
���� ���� ����� ����
WLS �� � ��
� ������ m � 	
� without check� ����� ���	� �


WLS �� � ��
� ������m � 	
� R� � 
���� ����� ����� ���	

Table 
� Error analysis using Otte image sequence
The second column of entries determines the method applied to generate the row of error
statistics� In our method �WLS�� the numbers in brackets depict the size of the Gaussian
smoothing �� is the standard deviation of the �lter�� the size of local patch used �p�� the
number of pairs of lines used to approximate the LMedS �m�� and the reliability threshold
�R��� in that order�
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Figure ��� Tree Sequence
Snapshot taken from the Tree sequence� This is actually a photograph of a ��at� poster and
the camera was moved in two dierent ways� approximately perpendicular to the surface of
the poster �very approximately� to create a mainly divergent �ow� and approximately parallel
to the surface� to create the �translating �ow��

Figure �	� Tree Sequence �Translating� � Correct Flow
True Flow of the Translating Tree sequence�

Figure �
� Tree Sequence �Translating� � WLS �ow �no validation�
WLS Flow of the Translating Tree sequence�
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Figure ��� Tree Sequence �Translating� � WLS R� � ���� �ow
WLS Flow �R� � ����� of the Translating Tree sequence�

Figure ��� Tree Sequence
True �ow of the Diverging Tree sequence�

Figure ��� Tree Sequence �Diverging� � WLS �ow
WLS Flow of the Diverging Tree sequence�
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Figure ��� Tree Sequence �Diverging� � WLS R� � ���� �ow
WLS Flow �R� � ����� of the Diverging Tree sequence�

Frame Technique Avg� Error Std� Dev� Error Density

�
 Fleet and Jepson �� � ����� 
��
� 
��	� ����
Fleet and Jepson �� � ���� 
���� 
���� ���

WLS �� � ��
� ���� m � 	
� without check� ����� 	�
�� �


WLS �� � ��
� ����m � 	
� R� � 
���� ����� ����� ����
WLS �� � ��
� ���� m � 	
� without check� ����� ����� �


WLS �� � ��
� ����m � 	
� R� � 
���� ����� ����� ����
WLS �� � ���� ���� m � 	
� without check� ����� ��	�� �


WLS �� � ���� ����m � 	
� R� � 
���� ����� ���� ����
WLS �� � ��
� ���� m � 	
� without check� ����� ����� �


WLS �� � ��
� ����m � 	
� R� � 
���� ����� ����� ����
WLS �� � ���� ���� m � 	
� without check� ��	�� ����� �


WLS �� � ���� ����m � 	
� R� � 
���� ����� ����� ����

Table �� Error analysis using Diverging Tree image sequence
The second column of entries determines the method applied to generate the row of error
statistics� In our method �WLS�� the numbers in brackets depict the size of the Gaussian
smoothing �� is the standard deviation of the �lter�� the size of local patch used �p�� the
number of pairs of lines used to approximate the LMedS �m�� and the reliability threshold
�R��� in that order�
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Frame Technique Avg� Error Std� Dev� Error Density

�
 Fleet and Jepson �� � ����� 
��	� 
���� ����
Fleet and Jepson �� � ���� 
�	�� 
�	�� ����
Szeliski and Coughlan �local �ow n � 	� 
���� 
��	� �


WLS �� � ��
� ������ m � �
� without check� 
�	�� 
�	�� �


WLS �� � ��
� ������m � �
� R� � 
����� 
�		� 
���� ���	
WLS �� � ���� ������ m � �
� without check� 
�	�� 
���� �


WLS �� � ���� ������m � �
� R� � 
���� 
�	�� 
���� �
��
WLS �� � ���� ������ m � 	
� without check� 
�	�� 
��	� �


WLS �� � ���� ������m � 	
� R� � 
���� 
�	�� 
��	� ����
WLS �� � ���� ������m � 	
� R� � 
����� 
�	
� 
��	� ����
WLS �� � ���� ������ m � �
� without check� 
�	� 
���� �


WLS �� � ���� ������m � �
� R� � 
���� 
�	� 
���� �



Table �� Error analysis using Translating Tree image sequence
The second column of entries determines the method applied to generate the row of error
statistics� In our method �WLS�� the numbers in brackets depict the size of the Gaussian
smoothing �� is the standard deviation of the �lter�� the size of local patch used �p�� the
number of pairs of lines used to approximate the LMedS �m�� and the reliability threshold
�R��� in that order�

the strengths of our approach� to deal with discontinuities� is unnecessary in this example�
For the �Translating Tree� sequence� all methods report very low average errors� Again� the
motion is extremely simple �no discontinuities and adequately modelled by locally �spatially�
constant� This con�rms our conjecture about the relative performance of our method on the
�Diverging Tree� sequence� Our method must be employed with large patch sizes to give
results comparable with those produced by Szeliski and Coughlan�

� Conclusion

We have developed a robust method for solving a system of over�determined linear equations
for the purpose of calculating optic �ow�

The essence of the method is that we use an approximate Least median of Squares approach
to identify outliers� This is particularly good at identifying and removing the eects of the
breakdown of the motion consistency assumptions underlying all optic �ow formulations �im�
plicitly or explicitly� all formulationsmust use a form of this assumption to �beat the aperture
problem��� The robustness� oered by the LMedS outlier detection� comes at only moderate
computational cost� indeed� our method is faster than most other schemes claiming high accur�
acy� Having detected and removed outliers� we use a simple Least Squares approach� followed
by a validation step �the latter� although probably useful in other situations� is certainly very
necessary to detect situations where the local area does not contain one dominant motion��

We have implemented and tested the proposed method� It should be emphasised that
the implementation contains many non�essential �to the central robust methods we have just
outlined� aspects� For example� we have used a simple� patch�wise� assumption of uniform
motion � this could be replaced with a more sophisticated a�ne motion model� Even so�
despite being based upon such a very simple motion model� we are able to present results that
generally out�perform or match every published method� Thus� our results� not only are of
interest in that they demonstrate the eectiveness of our proposed robust methods� but they
also seem to suggest that the simple motion models�assumptions are perhaps more reasonable
than other works have suggested� Such considerations do not deny� however� that we expect
even further improved performance by adapting our method to use more sophisticated motion
models�

It should be emphasised that the complete scheme� as outlined here� can be elaborated
upon in many ways� Many other innovations readily come to mind� One could develop a
hierarchical implementation that would not only improve calculation times� but would also
allow the method to cope better with larger motions �since the method uses a dierential based
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approach� large motions can be problematic�� One could also develop a multi�pass approach�
after identifying the outliers in the �rst pass� and solving for the motion associated with the
majority population of pixels in a block� construct a second pass using only the �rejected�
outliers� so as to recover other motions occurring within the block� We could also use M�
estimators and Total Least Squares in the solution after outliers had been removed� These�
and other innovations are the subject of ongoing work�

Finally� it should be stressed that� since the essence of our approach is that it is a ro�
bust method to solve an over�determined linear system of equations� the approach should be
applicable to a wide variety of problems �including and beyond other problems drawn from
computer vision research��
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A Derivation of the Optic Flow Constraint

Consider a point in one image� as time evolves� this point traces out a curve in 	D � �D
space plus time�� We can parameterise that curve using time as the parameter� Thus we may
write the curve as s�t� � �x�t�� y�t�� t�� In other words� given the time t �which image slice
we take� we have the current position to the point as being �x�t�� y�t��� We can suppress the
formal dependence of x and y on t� in what follows� Now the image brightness �the intensity
of the image point� is I�x� y� t�� We can take the total derivative of I�x� y� t� and� assuming
conservation of image brightness� we have�

� �
dI�x� y� t�

dt
�

�I�x� y� t�

�x

dx

dt
�

�I�x� y� t�

�y

dy

dt
�

�I�x� y� t�

�t
���

Since the components of the optic �ow are �ux� uy� � �dx
dt
� dy
dt
� we have the OFC �equation ���
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B Outlier Threshold

In our method� having obtained an approximate solution� based on an approximate LMedS�
we wish to assess the reliability of each constraint equation�

From equation �� we have� for each patch� p equations or constraints� Rousseeuw and
Leroy ���� give a good recipe for detecting outliers� We �rst calculate� for each constraint a
residual ri� then we calculate a scale factor s� according to�

s� � ��
����� �
�

�p� ��
�
q
med

i

r�i ����

We then� for every constraint� associate a binary weight so that the weight is � for any
constraint whose residual ri is such that j ri

s�
j is greater than ���� Rather then using these

weights� to directly reformulate the problem now as a �weighted� Least Squares problem�
we go through one more step of scaling� This is because the original weights were chosen�
according to equation ��� using the median involving the outliers� Since we now have a better
idea of which are truly outliers� we calculate�

�� �

s Pp

i�� wir
�
iPp

i��wi � p
����

and we� �nally� reject those constraints for which the associated value j ri
��
j is greater than ����

C Measure of Reliability

Although the LMedS technique has the highest possible breakdown point ����� of all known
robust estimators� it has the potentially fatal �aw in that is still produces an estimate� even if
the number of outliers is more than ���� Moreover� there are extreme cases where an image
patch may not contain su�cient data �lack of texture� or data so badly corrupted �aliasing for
example� for any estimate to be valid� Thus we still need to validate the estimate produced
by our method�

A tool for the validation process can be modelled on �the coe�cient of determination� �����
The coe�cient of determination� denoted R�� has been de�ned for the Standard regression
problem in at least nine dierent ways� The most well known of all the de�nitions is�

R� � ��

P
i�yi � !y��P
i�yi � y��

����

where !y is the estimate of y provided by the regression �t and y is the mean of all of the
data points yi� The intuition behind this measure is that the mean� y � is the best prediction
�minimum variance of error� assuming nothing about the relationship between xi and yi in
equation �� �����

For a robust form of Standard Regression� the following de�nition of R� has been used
���� �����

R� � ��
med

i

jyi � !yj

med
i

n
jyi �med

i

yj
o ��	�

However� although we are guided by analogy with the Standard Regression problem� we
are interested in robust forms of Least Squares� In addition� the above R� measure requires
the calculation of medians �a costly operation we would rather avoid�� Moreover� the above
measure is designed to be resistant to outliers� we want to use a measure that will tell us when
the Least Squares �t is valid in terms of the data after we have rejected� what we think are
all of the outliers � we do not want any statistic that is insensitive to the remaining outliers
at this stage of validation�

These considerations lead us to de�ne our own measure� which we also call R�� We
have found the following statistic� inspired by the form of the above measures� experimentally
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satisfactory�

R� � ��

Pp

i��wi�di � !di�
�Pp

i��wi�di � di��
��
�

where di is the average value of the di and !di is such that ai� !ux� ai� !uy � !di for the estimates
of �ow � !ux� !uy� from our weighted least squares�


