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Abstract

This paper presents a low cost novel odometry design capable of achieving high accuracy
dead-reckoning. It also develops a statistical error model for estimating position and
orientation errors of a mobile robot using odometry. Previous work on propagating odometry
error covariance relies on incrementally updating the covariance matrix in small time steps.
The approach taken here sums the noise theoretically over the entire path length to produce
simple closed form expressions, allowing efficient covariance matrix updating after the
completion of path segments. Closed form error covariance matrix is developed for a general
circular arc and two special cases : (I) straight line and (II) turning about the centre of axle of
the robot. Other paths can be composed of short segments of constant curvature arcs without
great loss of accuracy. The model assumes that wheel distance measurement errors are
exclusively random zero mean white noise. Systematic errors due to wheel radius and wheel
base measurement were first calibrated with UMBmark [BorFen94]. Experimental results show
that, despite its low cost, our system’s performance, with regard to dead-reckoning accuracy, is
comparable to some of the best, award-winning vehicles around. The statistical error model, on
the other hand, needs to be improved in light of new insights.

1  Introduction

One of the major tasks of autonomous robotics navigation is localisation. In a
typical indoor environment with a flat floorplan, localisation becomes a matter of
determining the Cartesian coordinates (x,y) and the orientation θ, collectively known as
the state, of the robot on a two dimensional floorplan. For a typical two wheel robot,
odometry (also known as dead-reckoning) remains to be one of the most important
means of achieving this task. Odometry is the measurement of wheel rotation as a
function of time. If the two wheels of the robot are joined to a common axle, the
position and orientation of the centre of the axle relative to the previous position and
orientation can be determined from odometry measurements on both wheels. In
practice, optical encoders that are mounted onto both drive wheels feed discretised
wheel increment information to the central processor, which in turn continually updates
the robot’s state using geometric equations. However, with time, odometric
localisation accumulates errors in an unbounded fashion due to wheel slippage, floor
roughness and discretised sampling of wheel increments. A lot of research works have
been undergone at both the hardware and theoretical level to improve the reliability of
odometry.

At the hardware level, [BarDur95] determine the position of their robot based on
inertial navigation with gyroscopes and/or accelerometers, but this method has been
proven to be susceptible to drift. The remainder of this paragraph showcases the dead-
reckoning implementations of a few robot vehicles from the University of Michigan:
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Cybermotion K2A utilises synchro-drive, which makes it insensitive to non-systematic
errors. CLAPPER, consisted of two TRC LabMates connected by a compliant linkage,
uses two rotary encoders to measure the rotation of the labmates relative to the
compliant linkage, and a linear encoder to measure the relative distance between their
centrepoints, giving it the unique ability to measure and correct non-systematic dead-
reckoning errors during motion. In the attempt to improve the dead-reckoning
performance of a tracked vehicle called Andros, a two-wheeled encoder trailer is
attached to the back of the vehicle, which is able to freely rotate on the horizontal
plane. The rotations of the trailer wheels and the trailer with respect to Andros are
measured with the attached optical encoders. More details about these robots can be
found in [BorFen94]. To the best of the authors’ knowledge, the robot used in the
experiment has a unique, lowest cost mechanical design which differs from all the
existing ones while still achieve comparable accuracy.

Work done at the theoretical level normally involves error quantification via
modelling, so that some kind of mathematical treatment would be possible. For
instance, many robust stochastic based techniques such as the Extended Kalman Filter
(EKF) require that the odometry errors be statistically quantified in the form of an
error covariance matrix, so that it can be combined with the information provided by
the external reference to produce a linear minimum mean square estimate of the
position. Therefore, high level methods also sometimes imply the utilisation of
additional external referencing of position.

Normally, odometry errors can be classified as being systematic or non-
systematic, and it is a common engineering practice to first identify the sources of
systematic errors and have them calibrated prior to using the system. In the work by
Borenstein and Feng [BorFen94], a calibration technique called UMBmark test has
been developed to calibrate out the systematic errors suffered by a typical two wheel
robot. The dominant systematic error sources are identified as being the difference in
wheel diameter and the uncertainty about the effective wheel base. The experiment
designed requires that robot be moved around a square path in both the clockwise
(CW) and counterclockwise (CCW) senses several times. The average Cartesian
offsets, known as the centres of gravity, from the initial positions are assumed to be a
sum (superposition) of the errors contributed by both systematic error sources. The
error model parameters are then solved and incorporated into the software as tuning
factors. In our work, this method has been used to calibrate the robot.

To be able to propagate the error covariance matrix of the robot’s state
following a change of stage is the main focus of this chapter. A commonly used
method [Durra93, Jenki93] is now presented. Supposed the at stage k-1, the state of

the robot is [ ]Sk k k k

T
x y− − − −=1 1 1 1θ , which comprises its two dimensional Cartesian

coordinates (xk-1, yk-1) and orientation θk-1 with respect to a global reference frame. It
then performs a rotation αk followed by a translation Dk to move to a new state

[ ]Sk k k k

T
x y= θ . Applying simple geometry,
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To propagate the error covariance matrix associated with the state matrix to the
next stage, the error incurred is assumed to be small so that first order Taylor’s
expansion in the form of Jacobian matrix does not introduce significant higher order
errors. Given the error covariance matrix of Sk-1 and the input vector

[ ]uk k k

T
D= α , and given the intuition that the error in stage k-1 is not correlated

with the error introduced by the input, the covariance matrix of the next stage, k, can
be evaluated as follows,
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In the authors’ opinion, the major problem with this treatment is that there is no
physical basis in assuming that the translation error is uncorrelated with the rotation
error [Durra93, CheCro92, LuMil95, Nishi95]. Model parameters do not give physical
insight into the characteristics of the system.

The model is also inconsistent. For the same path, if propagation of error is done
in multiple parts, the model yields different solution. To illustrate, suppose that

[ ]S k

T

− =1 0 0 0 and Cov(Sk-1) = 0. Compare the following two scenarios :

(i) [ ]uk

T
D0 2 0= with Cov u( )k
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By applying equation (2) twice, Cov S( )k
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Even by setting Cov(uk0)=2⋅Cov(uk1), the two cases yield different final state
error covariance, even though they lead to the same final state by following exactly the
same path. The authors consider this model as inadequate. [CheCro92] have tried to
resolve this problem by performing error propagation for every time increment on the
wheel encoders. This approach is conceptually similar to numerical integration but
suffers high computational cost. The physical reasoning which leads to the error model
is also questionable.

The theoretical work by [Wang88] has introduced a more realistic, physically-
based error model for an arbitrary circular arc motion. Furthermore, Wang has
attempted to circumvent the inadequacy of first order approximation by rigorously
evaluating the error covariance of the new state by integrating certain parts
constituting the state change expressions. The result is a model which is very accurate
for large wheel turn variance, but limited in its applicability to a range of rotation
angle. For large rotation angle, the robot path has to be divided into small segments in
which the total turning angle is within the limitation of the model.

Other methods of representing position error includes the ‘circular-error
probable’ (CPE) by [Leenh85] which defines a confidence circle about the estimated
vehicle’s position, and the vehicle has a 0.5 probability of being inside the circle. This
representation is questionable because it is well known that the position error is usually
not equal in all directions. [Krant96] has proposed the use of equal-error probability
isoline for a similar purpose, and has outlined some ways of growing the isoline as the
vehicle moves. It remains uncertain whether any existing robust mathematical
techniques could be adapted to these novel representations, and if none could, whether
new and sound methods could be developed to make use of them.

The new non-systematic error model developed by the authors has a strong
physical basis which is closely related to the design of the robot. The model also
generates error representation in the form of a error covariance matrix, which is the
standard operating block for a multitude of robust noise filtering tools. Unlike the
model illustrated earlier, the new model is consistent in a multiple path segments
scenario. The computational load in incrementally updating the covariance matrix in
small time steps, as done in [CheCro92] has been lifted because simple close form
formulae have been derived for three simple path types: (I) circular arc motion (II)
straight line (III) rotation about the centre of the axle. Complex paths can be divided
into sections which can be approximated by the aforementioned cases, hence the model
can be applied on a section by section basis. Unlike the model by [Wang88], it is valid
for arbitrary distance and rotation angle. Even though the model by [Wang88] is more
accurate when the errors are large, compared to the first order accuracy of the new
model, in the authors’ opinion, should the robot be operating in conditions likely to
incur large errors, an accurate representation of these large errors is insufficient.
Instead, extra measures should be adopted to correct for such errors when they arise,
such as employing external referencing.
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The remainder of this chapter is organised into six sections: Section 2
summarises the principles the authors adhere to in dealing with error modelling.
Section 3 presents the novel odometry system, and states, with justification, the key
assumptions being incorporated into the model. Section 4 describes the UMBmark test
used for reducing systematic errors and lists the key equations used. This is followed
by section 5 on the derivation of the proposed non-systematic error model and
highlights of its features. The details and results of  calibration of systematic errors and
validation of the proposed error model constitute section 6. Lastly, section 7 is the
conclusion which points out some inadequacy of the model and suggests possible
future work for addressing these issues.

2  Principles of Error Modelling - A Summary

In our works, error modelling has been carried out based on following steps:

Error Classification The uncertainties in data are contributed by many error
sources. Error classification allows certain errors to be eliminated, and strategies to be
developed to decouple the actual errors of interest from the errors introduced by the
measuring devices. In practice, errors are grouped into two major categories:

• Systematic Errors : are errors that recur during every run of experiment. It is
possible to calibrate systematic errors prior to tackling random errors. In our work,
systematic errors are assumed to be predominantly caused by unequal diameters on
both wheel, inaccurate estimation of effective wheel base [BorFen94], and, as the
external referencing tool, the offsets of the sonar sensor from the midpoint of wheel
axle and forward orientation of the robot.

 

• Non-systematic Errors : refer to the random errors and are often characterised by
their mean vectors and error covariance matrices. In most cases, the mean vector is
zero after calibration and therefore often ignored. In the context of our work, non-
systematic errors are assumed to be primarily caused by wheel slippage and
backlash, non-continuous sampling of wheel increments, the noise associated with
sensor reading caused by the fluctuation of speed of sound and imperfections in
reference targets [KleKuc93], and, discretisation of the pan encoder measuring the
pan motor to 0.18° per step.

Error Modelling Once the error types and sources are identified, model can be
developed to describe the interaction between the system’s dynamic and the error
sources. In the context of our work, this means

• Parameterisation of Errors : determination of how the errors are best quantified.
For systematic errors, the parameterisation usually takes the form of a multiplicative
constant to the nominal value. In our work, the real wheel base is regarded as
proportional to the nominal wheel base, and the diameters of both wheel sustain a
constant ratio [BorFen94]. For non-systematic errors, error covariance matrices are
the preferred form of representation.

 



Accurate Odometry and Error Modelling for a Mobile Robot, MECSE-1996-6

6

• Process Modelling : determination of mathematical expressions which describe the
dynamic behaviour of a system. These expressions decide how the error parameters
are incorporated into the state of the system after a state transition. For systematic
errors, the expressions translate the modelling parameters into measurable
experimental data after a change of state, so they can be estimated and imbued into
the software as ‘tuning factors’. For non-systematic errors, the expressions generate
the error covariance matrices for the final state by incorporating the statistical
nature (once again parameterised) of the change into the initial state.

3  Robot Design and Assumptions

The robot used in the experiment has two pairs of wheels : the actual drive wheels, and
the encoder wheels that generate odometry measurements. The encoder wheels are as
sharp-edged as practically possible to reduce the wheel base (B) uncertainty, and are
unloaded because they are independently mounted on linear bearings which allow
vertical motion, hence the problem of wheel distortion is minimised. In the authors’
belief, this design greatly improves the reliability of odometry measurements since
wheel slippage and load deformation are no longer significant.

Based on the design, the following assumptions are made before proceeding to
the next stage of model development.

It is reasonable to assume that for a short unit of travel, the error incurred on
both wheels are uncorrelated. because the two drive wheels are driven by two different
motors, and two separate optical shaft encoders are used to gather odometry
information. This assumption is adopted by [BorFen94, Kleem95].

       
castor

drive wheel

encoder wheel

B

castor

x

y

+

motor

optical shaft
encoder

Figure 1 : Left : Sonar sensing robot with accurate odometry system. Right : Design of precise
odometry system

Our work takes the assumption one step further. For a short unit of travel, the
error is assumed to be zero mean, and white, that is, uncorrelated with the previous or
next unit of travel. The variance of the cumulative error is then the sum of the variance
of each statistically independent unit. This leads to a reasonable assumption that the
variance of each unit of travel is proportional to the distance travelled
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where dL and dR are the distances travelled by each wheel, and kL
2 and kR

2 are constants
with unit m1/2.

4  Calibration of Systematic Error Using UMBmark Test

UMBmark test [BorFen94] has been used for the calibration of wheel base error and
unequal wheel diameter error. The principles and mathematical details of the
procedures can be found in [BorFen94] so only key equations are summarised here. In
short, the robot was programmed to travel a square path of side D in the clockwise
sense (CW) for a number of times, say n, and the offsets of the final Cartesian
coordinates from the initial Cartesian coordinates, exi,CW, eyi,CW were recorded. The
experiment was repeated for the counterclockwise sense (CCW) and exi,CCW, eyi,CCW

were recorded. The ‘tuning factors’ required to be incorporated into the software to
counteract the effect of the systematic errors have been calculated from the weighted
Cartesian offsets in both senses. As summary, the centres of gravity of the offsets can
be computed from the their averages

x exc g CW CCW n i CW CCW
i

n

. ., / , /=
=
∑1

1

(5)

y eyc g CW CCW n i CW CCW
i

n

. ., / , /=
=
∑1

1

(6)

With the two pairs of centres of gravity, the tuning factors for the wheel base,
the radius of left wheel and the radius of right wheel, cb, cl and cr, can be found by
following this sequence of computations:

α =
+

−
−

−
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x x

D

y y

D
c g CW c g CCW c g CW c g CCW. ., . ., . ., . .,,

4 4
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4 4
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E
D B

D Bd =
+
−

sin( / )

sin( / )

β
β

2

2
(9)

cb = −π π α/ ( ) (10)

c El d= +2 1/ ( ) (11)

c E cr d l= (12)

and finally, the measure of dead-reckoning accuracy for systematic errors has been
defined in  [BorFen94] as

( )E x y x ysyst c g CW c g CW c g CCW c g CCWmax, . ., . ., . ., . .,max ,= + +2 2 2 2 (13)
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5  The New Non-systematic Error Model

With the new non-systematic error model, the entire path travelled by the robot
is treated as consisting of k small segments. Propagation of error covariance is required
to be done k times to obtain the error covariance of the final state. This section shows
that it is possible to obtain a closed form solution for this model, as k approaches
infinity. The solution for a general circular arc motion is first developed. The solutions
for two special cases, straight line motion and on-spot turn are then obtained by
suitably taking limits.

Suppose that at segment k-1, the state of the robot is [ ]k k k− − −1 1 1

[ ]k k k

T
x y= θ . Over an infinitesimal time increment, the

speed of the wheels can be assumed constant, hence the path takes on a circular arc
trajectory with constant radius of curvature rk. Refer to Figure 2.
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and as stated earlier,

Cov u( )k
L

R

L k

R k

k L

k R
=









 =











σ
σ

2

2

2

2

0

0

0

0
(18)

Refer to Figure 2 again, suppose that the arc segment is now infinitesimally
small, and the full path actually comprises k such segments being concatenated from
end to end. The initial state of the robot is S0 which is at the starting end of the first
segment and the last segment is Sk  which is the destination of the last segment.

The expression for covariance propagation can be recursively expanded like a
Markov process,
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Let Li , Ri denote the small increments in wheel turn at for the ith segment, and
for circular arc motion, L = kLi , R = kRi. Let r be the radius of curvature of the circular
arc.
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It is possible to show, by induction, that
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Therefore the covariance of Sk can be further evaluated to
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The sum of products part of equation (23) gives rise to an error covariance
matrix henceforth known as Cov(Uk). It is so named because it is contributed entirely
by the error associated with the motion. Let Cov(Uk)i,j be the ith row, jth column
component of Cov(Uk), after taking k→∞
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Where sgn(x)=|x|/x if x≠0 and 0 if x=0. These equations obviate the need to
incrementally update the covariance matrix in small time steps. These are closed form
expressions which are applicable to any circular arc motion with constant radius of
curvature. For many applications, however, the robot will often need to perform two
types of motion : straight line and rotation about the centre of the axle. The matrix
terms can be further simplified by suitably taking limits.

5.1  Special Case 1 : Straight Line Translation

For a straight line path of length D, both wheels rotates by the same amount and the
initial angle is approximately the same as the finally angle, hence L,R→D and θ0→θk ,
The above equations can be simplified to
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An insight into the model is crucial at this point. Suppose that the initial state

[ ]S0 0 0 0= T
 and is accurately known, that is Cov(S0)=0, so that the focus can

be placed on the motion error. Physically, the robot moves in the x direction by D. The
expressions for Cov(Uk) can be further simplified to
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(27)

The model predicts that variance in the direction perpendicular to the direction of
motion is proportional to the cube of the distance travelled, whereas the variance in the
direction of motion is only proportional to the distance travelled. Also note that the
correlation coefficient between the perpendicular distance error and the orientation

error is D
B

D
B

D
B

2

2

3

22 3
0 866/ .⋅ = .
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The model is also consistent. Unlike its classical counterpart, if propagation is
done in multiple parts, the model generates exactly the same prediction. This is because
the model itself is founded upon the concept of incrementally propagating error
covariance from one infinitesimal section to the next.

5.2  Special Case 2 : Rotation about the Centre of Wheel Axle

For rotation about the centre of wheel axle, both wheels still rotate by the same
amount, but in opposite direction. By letting L B

k→ −2 0( )θ θ and R B
k→ −2 0( )θ θ ,

the above equations can be simplified to

[ ]Cov U k kk
B

k k R L k( ) ( ) sin( ) sin( ) ( )sgn( ),11 32 0 0
2 2

02 2 2= − − + + −θ θ θ θ θ θ

[ ]Cov U k kk
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k k R L k( ) ( ) sin( ) sin( ) ( )sgn( ),2 2 32 0 0
2 2

02 2 2= − + − + −θ θ θ θ θ θ

Cov U k kk B R L
k( ) ( ),3 3 2

2 20= +−θ θ

[ ]Cov U Cov U k kk k
B

k R L k( ) ( ) cos( ) cos( ) ( )sgn( ), ,1 2 2 1 32 0
2 2

02 2= = − + −θ θ θ θ

Cov U Cov U k kk k R L k k( ) ( ) ( )(sin sin )sgn( ), ,1 3 3 1
1
4

2 2
0 0= = − − −θ θ θ θ

Cov U Cov U k kk k R L k k( ) ( ) ( )(cos cos )sgn( ), ,2 3 3 2
1
4

2 2
0 0= = − − −θ θ θ θ (28)

6 Implementation and Results

The experimental work comprises three stages : simulation, calibration for systematic
errors and analysis of non-systematic errors.

6.1  Simulation

Monte Carlo simulations have been carried out to examine the validity of
approximations being made in the course of deriving the model, and to envisage the
vulnerability of its first order basis to various combinations of wheel variances, initial
covariance and travel distance. Altogether seven combinations of conditions have been
simulated and the comparison of mean and covariance are tabulated in Table 1 to Table
7.

Number of Monte-Carlo Runs = 10000
Wheel Base = 0.4m
Number of Partitions of Path = 10000
Initial State = [0 0 0]T
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Table 1 : Simulation results with L=3m, R=1m, [σσx σσy σσθθ]T=[0 0 0]T

(I) kL=0.001m1/2

kR=0.001m1/2
(II) kL=0.003m1/2

kR=0.002m1/2
(III) kL=0.01m1/2

kR=0.02m1/2

Theory Simul Theory Simul Theory Simul
mean x (m) -0.38357 -0.383646 -0.38357 -0.383626 -0.38357 -0.383321
mean y (m) -0.286535 -0.286721 -0.286535 -0.286685 -0.286535 -0.28738

mean θθ (rad) 1.28319 1.28368 1.28319 1.28357 1.28319 1.28458

stddev x (m) 1.4376e-3 1.4253e-3 3.473e-3 3.4643e-3 2.4473e-2 2.4104e-2
stddev y (m) 2.4666e-3 2.4172e-3 6.494e-3 6.402e-3 3.6930e-2 3.5939e-2

stddev θθ (rad) 5.0000e-3 4.9823e-3 0.01392 0.01392 6.6144e-2 6.5469e-2

corr xθθ (%) -59.47 -59.45 -64.81 -64.998 -52.882 -52.162

corr yθθ (%) -86.46 -86.19 -89.95 -89.875 -79.698 -78.803

corr xy (%) 41.90 42.43 50.38 51.148 29.783 29.471

Table 2 : Simulation results with L=15m, R=10m, [σσx σσy σσθθ]T=[0 0 0]T

(I) kL=0.001m1/2

kR=0.001m1/2
(II) kL=0.003m1/2

kR=0.002m1/2
(III) kL=0.01m1/2

kR=0.02m1/2

Theory Simul Theory Simul Theory Simul
mean x (m) -6.6322e-2 -6.7663e-2 -6.6322e-2 -6.748e-2 -6.6322e-2 -7.092e-2
mean y (m) -2.2017e-3 -2.6005e-3 -2.2017e-3 -3.446e-3 -2.2017e-3 -2.249e-2

mean θθ (rad) 6.637e-2 6.767e-2 6.637e-2 6.757e-2 6.637e-2 7.137e-2

stddev x (m) 1.5223e-2 1.5192e-2 3.933e-2 3.9251e-2 0.235605 0.23263
stddev y (m) 8.723e-3 8.704e-3 2.1383e-2 2.1352e-2 0.145819 0.147936

stddev θθ (rad) 1.25e-2 1.2413e-2 3.3072e-2 3.2973e-2 0.185405 0.183095

corr xθθ (%) -82.348 -82.341 -84.3 -84.276 -78.975 -78.542

corr yθθ (%) -9.528 -9.686 -10.282 -10.424 -8.457 -9.375

corr xy (%) 7.826 6.992 8.6489 8.045 6.657 6.015

Table 3 : Simulation results with L=3m, R=1m, [σσx σσy σσθθ]T=[0.05m 0.05m 2°°]T

(I) kL=0.001m1/2

kR=0.001m1/2
(II) kL=0.003m1/2

kR=0.002m1/2
(III) kL=0.01m1/2

kR=0.02m1/2

Theory Simul Theory Simul Theory Simul
mean x (m) -0.38357 -0.38294 -0.38357 -0.383273 -0.38357 -0.382952
mean y (m) -0.286535 -0.287202 -0.286535 -0.287167 -0.286535 -0.287857

mean θθ (rad) 1.28319 1.283435 1.28319 1.2833 1.28319 1.28434

stddev x (m) 5.099e-2 5.2362e-2 5.1094e-2 5.2508e-2 5.6546e-2 5.8017e-2
stddev y (m) 5.1794e-2 5.1077e-2 5.2141e-2 5.1425e-2 6.3564e-2 6.2373e-2

stddev θθ (rad) 3.5e-2 3.5206e-2 3.7333e-2 3.7516e-2 7.4666e-2 7.4344e-2

corr xθθ (%) 19.025 19.083 16.383 15.9996 -12.131 -11.71

corr yθθ (%) -25.979 -26.72 -27.822 -28.434 -50.717 -49.487

corr xy (%) -4.937 -3.317 -4.524 -2.715 3.819 5.185
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Table 4 : Simulation results with L=15m, R=10m, [σσx σσy σσθθ]T=[0.05m 0.05m 2°°]T

(I) kL=0.001m1/2

kR=0.001m1/2
(II) kL=0.003m1/2

kR=0.002m1/2
(III) kL=0.01m1/2

kR=0.02m1/2

Theory Simul Theory Simul Theory Simul
mean x (m) -6.6322e-2 -6.7422e-2 -6.6322e-2 -6.723e-2 -6.6322e-2 -7.0508e-2
mean y (m) -2.2017e-3 -3.3320e-3 -2.2017e-3 -4.175e-3 -2.2017e-3 -2.3202e-2

mean θθ (rad) 6.63706e-2 6.7471e-2 6.63706e-2 6.727e-2 6.63706e-2 7.117e-2

stddev x (m) 5.2266e-2 5.3774e-2 6.3615e-2 6.5274e-2 0.240852 0.238806
stddev y (m) 5.0807e-2 5.0081e-2 5.4429e-2 5.3753e-2 0.15417 0.156657

stddev θθ (rad) 3.6827e-2 3.7032e-2 4.7893e-2 4.8004e-2 0.18861 0.186645

corr xθθ (%) -8.004 -7.548 -35.903 -35.278 -75.935 -75.161

corr yθθ (%) -4.809 -5.509 -5.842 -6.722 -8.137 -9.165

corr xy (%) 0.3848 0.2199 2.0956 3.1899 6.159 5.8689

Table 5 : Simulation results with L=3m, R=1m, [σσx σσy σσθθ]T=[0.1m 0.1m 5°°]T

(I) kL=0.001m1/2

kR=0.001m1/2
(II) kL=0.003m1/2

kR=0.002m1/2
(III) kL=0.01m1/2

kR=0.02m1/2

Theory Simul Theory Simul Theory Simul
mean x (m) -0.38357 -0.381971 -0.38357 -0.381949 -0.38357 -0.381608
mean y (m) -0.286535 -0.286882 -0.286535 -0.286846 -0.286535 -0.287527

mean θθ (rad) 1.28319 1.28306 1.28319 1.28296 1.28319 1.28398

stddev x (m) 0.103082 0.105786 0.103131 0.105885 0.105938 0.108937
stddev y (m) 0.105471 0.104072 0.110046 0.104245 0.111722 0.110046

stddev θθ (rad) 0.087321 8.7836e-2 0.109738 8.8878e-2 0.10943 0.109738

corr xθθ (%) 24.145 24.212 12.089 23.4391 11.401 11.444

corr yθθ (%) -31.768 -32.551 -39.425 -32.865 -39.767 -39.425

corr xy (%) -7.669 -6.159 -3.428 -5.954 -4.783 -3.245

Table 6 : Simulation results with L=15m, R=10m, [σσx σσy σσθθ]T=[0.1m 0.1m 5°°]T

(I) kL=0.001m1/2

kR=0.001m1/2
(II) kL=0.003m1/2

kR=0.002m1/2
(III) kL=0.01m1/2

kR=0.02m1/2

Theory Simul Theory Simul Theory Simul
mean x (m) -6.6322e-2 -6.6998e-2 -6.6322e-2 -6.678e-2 -6.6322e-2 -6.9807e-2
mean y (m) -2.2017e-3 -4.0477e-3 -2.2017e-3 -4.887e-3 -2.2017e-3 -2.3840e-2

mean θθ (rad) 6.6391e-2 6.7071e-2 6.6391e-2 6.6971e-2 6.6391e-2 7.0771e-2

stddev x (m) 0.101152 0.10396 0.107457 0.110578 0.255949 0.254892
stddev y (m) 0.100546 9.9042e-2 0.102424 0.100984 0.176909 0.179717

stddev θθ (rad) 8.807e-2 8.8607e-2 9.324e-2 9.3723e-2 0.20488 0.203619

corr xθθ (%) -1.571 -1.003 -10.777 -10.228 -65.756 -64.149

corr yθθ (%) -5.81 -6.53 -6.039 -6.956 -7.699 -9.134

corr xy (%) 0.0913 1.9125 0.6508 -2.2438 5.0488 5.2486
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Table 7 : Simulation results with L=15m, R=10m, [σσx σσy σσθθ]T=[0 0 0]T

(I) kL=0.05m1/2

kR=0.05m1/2
(II) kL=0.1m1/2

kR=0.1m1/2
(III) kL=0.5m1/2

kR=0.5m1/2

Theory Simul Theory Simul Theory Simul
mean x (m) -6.6322e-2 -5.7167e-2 -6.6322e-2 -2.795e-3 -6.6322e-2 0.372037
mean y (m) -2.2017e-3 -0.189423 -2.2017e-3 -0.556837 -2.2017e-3 -0.310966

mean θθ (rad) 0.0663706 0.0714706 0.0663706 0.0753706 0.0663706 0.181841

stddev x (m) 0.761173 0.67708 1.522347 1.1008 7.611734 2.436149
stddev y (m) 0.436142 0.491106 0.872283 1.03646 4.361422 2.401108

stddev θθ (rad) 0.625000 0.62063 1.250000 1.241261 6.250000 6.206303

corr xθθ (%) -0.82348 -0.75888 -0.82348 -0.50629 -0.82348 0.057035

corr yθθ (%) -0.09528 -0.11516 -0.09528 -0.12235 -0.09528 0.041792

corr xy (%) 0.078263 0.068023 0.078263 0.020512 0.078263 0.019032

The values of kL and kR are not normally higher than 0.02m1/2 (amounts to a
wheel standard deviation of 0.02m in 1m) because in practice better odometry is
achievable by most existing odometry systems. In the first six cases, the standard
deviations are at least an order of magnitude larger than the difference between the
theoretical mean and the simulated mean. This bias in mean is in turn a lot smaller than
the distance travelled and initial covariance. Despite going as high as 0.02m for the
worst kL and kR in the sixth case, it has little impact on the prediction of standard
deviation. The discrepancy in the estimation of standard deviation is a lot less than the
initial error and distance travelled, on average 0.005% to 0.3% from the shortest test
distance to the longest test distance for moderate kL and kR . The prediction of
correlation coefficient is generally good except for corr xy, which shows significant
discrepancy at large initial covariance. Expectably, standard deviation is dominated by
initial errors when they are large. Therefore, Table 7 investigates the limitation of the
model alone at large kR and kL by setting the initial errors to zero. For distance around
10m, the model performs marginally good at kR=kL=0.05m1/2. Beyond that, the
performance deteriorates rapidly and a second order model becomes necessary. A
orientation standard deviation of almost 2π for the largest wheel variances tested gives
absolutely no angle information.

In practice, the estimation of mean is believed to be more superior because it is
calculated with the data from the wheel encoders. Therefore, the model for predicting
the non-systematic error covariance can be regarded as statistically sufficient.

6.2  Calibration for Systematic Error

In this part of the experiment, the wheel encoder measurements were used to
calculated the perceived final state of the robot, whereas the sonar array mounted on
top of the robot was to used to estimate its actual state by sensing some reference
walls placed close to the initial state. Two reference walls were used to establish the
robot’s coordinates and orientation. Unfortunately, in collecting such statistics, errors
were introduced by the sensor in two ways :

• Systematic errors : Horizontal offsets of the sonar array from the midpoint of the
wheel axle, and the misalignment of sonar array ‘zero’ direction with the normal of
the wheel axle.
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• Non-systematic errors : Discretisation of pan mechanism into steps of 0.18°, and
the fluctuation of speed of sound.

It remains unknown at this stage how these offset errors could be removed. The
sonar array was positioned and aligned as accurately as possible, and the offsets were
set to zero. The distance travelled was made large so that the odometry random errors
outweigh the sensor errors. It is also justifiable to state that the non-systematic errors
caused by the sonar sensor can be assumed small compared to the odometry errors.
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Figure 3 : Result of UMBmark test, before and after calibration.

The distribution of Cartesian offsets after the completion of D=4m square path
for 5 runs in each sense (clockwise and counterclockwise), before and after calibration,
are shown in Figure 3. The value of D has been chosen as such in order to make
comparison with the results presented in [BorFen94].

Table 8 : Key results before and after calibration

Before Calibration After Calibration
xc.g.,CCW (mm) 97 26
yc.g.,CCW  (mm) -94 -20
xc.g.,CW  (mm) 32 0.4
yc.g.,CW  (mm) 31 -1
Emax,syst (mm) 135 33 (4 folds )

wheel base (m) 0.37100 0.36898
left wheel radius (m) 0.06890 0.068662

right wheel radius (m) 0.06884 0.068871

The calibration results are presented in Table 8. Comparison with other robot
vehicles are made in Table 9, it can be seen that the measure of dead-reckoning
accuracy for systematic errors, Emax,syst , is comparable to those achievable by many
advanced but more costly odometry systems. To seek further improvement, further
calibration has been carried out with the compensated parameters. It has been found
that the parameter values fluctuated a little but insignificantly. The residual systematic
errors could not be thoroughly removed despite repetitive trials.
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model cannot account for unexpected errors such as hitting a bump on the floor, which
violates the flat floorplan assumption. Extra consideration is necessary. For certain
applications such as mapping, external referencing should be deployed to correct such
errors instead of treating them as systematic errors as done in [BorFen94]. Moreover,
the values of kL and kR depend critically on the interaction between the encoder wheels
and the floor. As future work, a new technique which employs laser beams will be
developed to further validate the non-systematic error model.
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